
É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 1

IQRF OS

Operating System

Version 3.09 D for (DC)TR -7xD

Reference Guide

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 2

 1 Quick reference

This document is valid for TR as well as DCTR transceivers. For simplicity, only TR is used further on throughout the
document (with minor exceptions where needed).

Values between system functions and superordinate program are passed on via parameters. OS uses 3 parameters in

total: param2 (1 B), param3 (2 B) and param4 (2 B). Their location in memory see the IQRF OS Userôs guide [1], chapter

RAM map. Individual functions have up to 3 parameters. Several functions use some of these params and W (PIC
accumulator) to return output values. Note that they are valid until another function using the same parameter or the
debug function is called by the user. Additionally, some functions use some params as work variables that is why their
previous content can be destroyed.

Five stack levels are available to call all OS functions in subroutines.

Unless otherwise stated, OS functions run in OS foreground. Thus, the program continues not until the function is
finished.

Several functions, e.g. startSPI or startDelay run in OS background. Thus, they are not blocking. The program

execution continues immediately further and the user can check the result later on.

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 3

 2 Table of OS functions

Unless otherwise stated, all functions are the void type and all their parameters are the uns8 type.

Control 6

iqrfSleep() Set the TR module in power saving mode (Sleep) 6

setRFsleep () Set the RF IC in power saving mode (Sleep) 7

setRFready() Set the RF IC in ready mode (wake-up from Sleep) 7

debug() Enter the debug mode 8

uns8 getSupplyVoltage() Get voltage level for battery check 9

getTemperature() Temperature measurement 10

Active (blocking) waiting 11

waitMS(ms) Active waiting (time in ms) 11

waitDelay(ticks) Active waiting (time in ticks) 11

waitNewTick() Wait for a new tick 12

Timing on background 13

startDelay(ticks) Start waiting (time in ticks) 14

startLongDelay(ticks) Start long waiting (time in ticks) 14

bit isDelay() Still waiting 15

startCapture() Resets counter of ticks 13

captureTicks() Get number of ticks counted 13

LED indication 16

setOnPulsingLED(ticks) LEDR and LEDG On times setting (for blinking) 16

setOffPulsingLED(ticks) LEDR and LEDG Off times setting (for blinking) 16

pulsingLEDR() Red LED activation (blinking on background) 17

pulseLEDR() Single red LED pulse (one flash on background) 17

stopLEDR() Red LED off, blinking stopped 18

pulsingLEDG() Green LED activation (blinking on background) 18

pulseLEDG() Single green LED pulse (one flash on background) 19

stopLEDG() Green LED off, blinking stopped 19

MCU EEPROM 20

uns8 eeReadByte(address) Read one byte 20

eeReadData(address, length) Read a block 20

eeWriteByte(address, data) Write one byte 21

eeWriteData(address, length) Write a block 21

Serial EEPROM 22

bit eeeReadData(address) Read a 16 B block from serial EEPROM to bufferINFO 22

bit eeeWriteData(address) Write a 16 B block from bufferINFO to EEPROM 23

RAM 24

uns8 readFromRAM(address) Read one byte 24

writeToRAM(address, data) Write one byte 24

void setINDF0(value) Indirect write via virtual INDF0 register 25

void setINDF1(value) Indirect write via virtual INDF1 register 25

uns8 getINDF0() Indirect read via virtual INDF0 register ï obsolete 26

uns8 getINDF1() Indirect read via virtual INDF1 register ï obsolete 27

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 4

Buffers 28

clearBufferINFO() bufferINFO clearing 32

clearBufferRF() bufferRF clearing 33

copyBufferINFO2COM() Copy bufferINFO to bufferCOM 28

copyBufferINFO2RF() Copy bufferINFO to bufferRF 29

copyBufferRF2COM() Copy bufferRF to bufferCOM 29

copyBufferRF2INFO() Copy bufferRF to bufferINFO 29

copyBufferCOM2RF() Copy bufferCOM to bufferRF 30

copyBufferCOM2INFO() Copy bufferCOM to bufferINFO 31

bit compareBufferINFO2RF(length) Comparison of bufferINFO and bufferRF 31

void swapBufferINFO() Swap bufferINFO and bufferAUX 32

Data blocks 34

copyMemoryBlock

(uns16 from, uns16 to, uns8 length)
Copy any data block to any position 34

moduleInfo() Get info about transceiver module and OS 35

appInfo() Copy info about application from EEPROM to bufferINFO 36

SPI 37

enableSPI() SPI communication line activation 37

disableSPI() SPI communication line deactivation 37

startSPI(length) SPI packet transmission 38

stopSPI() SPI stopping 39

restartSPI() SPI continuing 39

bit getStatusSPI() SPI status, update SPI flags 40

RF 41

set RFpower(level) RF TX power setting (8 levels) 41

setRFspeed(speed) Select RF bit rate ï not yet implemented 41

setRFband(band) Select RF band ï obsolete 42

setRFchannel(channel) Select RF channel 42

setRFmode(mode) Select RF power management mode 43

checkRF(level) Detect incoming RF signal 45

getRSSI() Get RSSI value of incoming RF signal 46

RFTXpacket() Send a packet from bufferRF via RF 48

bit RFRXpacket() Receive a packet via RF to bufferRF 48

Networking 50

setCoordinatorMode() Device is the Coordinator 50

setNodeMode() Device is a Node 50

setNonetMode() Networking disabled 51

setNetworkFilteringOn() Packets accepted from current network only 52

setNetworkFilteringOff() Packets accepted from both networks 52

setUserAddress(uns16: address) Assign a user address to a Node 53

uns8 getNetworkParams() Get information about the network 54

void sendFRC(cmd) Request for Fast Response Command 55

void responseFRC() Answer to Fast Response Command 59

bit amIRecipientfOfFRC() Evaluate whether the FRC conmmand is intended for given Node 61

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 5

Routing 62

setRoutingOn() Outgoing packets routed via other devices on background 62

setRoutingOff() No routing for outgoing packets 62

uns8 discovery(MaxNodeNumber) Discover Nodes for routing 63

answerSystemPacket() Enable response to Coordinator for Discovery and nodeAuthorization 63

bit isDiscoveredNode(N) Check for being discovered 65

bit wasRouted() Indicate incoming packet routing 65

optimizeHops(method) Optimize number of hops for given Node 66

Bonding - Node 67

bit bondRequestAdvanced() Request for bonding (local or remote) 67

bit bondRequest() Request for bonding ï obsolete 68

bit amIBonded() Is the Node bonded? 69

removeBondAddress() Changing Node address to universal address (0xFE) 69

removeBond() Unbonding 70

Bonding - Coordinator 71

bit bondNewNode(address) Local bonding a Node 71

nodeAuthorization() Remote bonding of prebonded Node 72

bit isBondedNode(node) Is the Node bonded? 73

removeBondedNode(node) Unbonding a Node 74

bit rebondNode(node) Rebonding a Node 74

clearAllBonds() Clearing of all bonds 75

Bonding ï Node and Coordinator 76

prebondNode() Proparing Node for remote bonding 76

RFPGM 78

enableRFPGM() Set to switch to RFPGM mode after reset 78

disableRFPGM() Set not to switch to RFPGM mode after reset 78

runRFPGM() Switch to RFPGM mode 79

setupRFP GM(x) Setup RFPGM parameters 80

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 6

 3 OS functions

 3.1 Control

 3.1.1 iqrfSleep

Function Setting the TR module in power saving mode (Sleep)

Purpose Easy and efficient power management. This function, once called, puts the module into the Sleep
mode. Wake-up can be caused by power off/on, watchdog timeout or on the C5 (for TR modules in
SIM format, e.g. TR-72D) or Q12 (for TR-76D) pin change.

Syntax void iqrfSleep()

Parameters ï

Return value ï

Output values ï

Preconditions ¶ This functions operates like the PIC machine instruction Sleep. Additionally, OS suspends all HW
resources that are under its control (RF circuitry, timers, internal PIC pins, LEDs etc.). The user
should do the same for resources used by the application before entering the Sleep mode to
achieve minimal power consumption. No PIC pins must be left as digital inputs without defined input
log. level values. See example E14-CONSUMPTION.

¶ For wake-up on pin change the required sequence shoud be executed, see the Example 2 below.
Wake-up on pin change is default disabled.

¶ This function is not time-efficient for subsequent short sleep periods, especially if RF IC is off. For
faster operation in such cases use sleep() instead but you should ensure minimal consumption by
user program. See Example 3.

Remarks ¶ IOCBF flag is cleared automatically by OS.

¶ Flags IOCBN and IOCBP are unchanged (not cleared) within iqrfSleep .

¶ Wake-up types can be identified via the ïTO and ïPD status flags (in the MCU STATUS register).

Side effects Global interrupt enable (GIE) is controlled by OS again after wake-up.

See also setRFsleep

Example 1 // Minimize consumption (depends on resources used by the user)

Motor = 0; // Stop the motor

ADON = 0; // Disable A/D converter

SWDTEN = 0; // Disable watchdog

iqrfSleep(); // Put the module into Sleep mode

Example 2 // Wake - up on pin change. See E xample E01 - TX and IQRF - macros.h header file.

GIE = 0; // Disable all interrupts

writeToRAM(&IOCBN, IOCBN | 0x10); // Negative edge active.

 // Instead of IOCBN.4=1;

 // Bit IOCBN.4 cannot be written

 // directly due to OS restriction.

IOCBP.4 = 1; // Positive edge active

IOCIE = 1; // Interrupt on change enabled

SWDTEN = 0; // Watchdog disabled

iqrfSleep(); // Sleep

GIE = 0;

writeToRAM(&IOCBN, IOCBN & 0xEF); // Clear negative edge flag (IOCBN.4)

IOCBP.4 = 0; // Clear positive edge flag

GIE = 1;

if (buttonPressed) // If button is pressed

 { ... } // ...

Example 3 iqrfSleep(); // Sleep

 ...

 ... // Wake - up, RF IC remains off

stopLEDR(); // Disable peripherals to minimize consumption

sleep(); // Faster (if RF IC is off). This is not an IQRF function

 // but a machine instruction supported by C compiler.

pulseLEDR(); // Continue after wake - up

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 7

 3.1.2 setRFsleep

Function Setting RF circuitry in power saving mode (Sleep)

Purpose To put all RF circuitry in Sleep mode. Easy and efficient power management.

Syntax void setRFsleep()

Parameters ï

Return value ï

Output values ¶ RF IC is set off.

¶ OS system clock (ticks) are derived from MCU internal RC oscillator instead of precise RF IC
crystal.

Preconditions ï

Remarks ¶ Wake-up can be caused by setRFready , RFTXpacket , RFRXpacket or checkRF

¶ Refer to the datasheet of given TR module [4] for power consumption saving.

Side effects ï

See also setRFready , iqrfSleep , checkRF , RFTXpacket , RFRXpacket

Example setRFsleep(); // Put the RF circuitry in Sleep mode

 3.1.3 setRFready

Function Wake RF circuitry up

Purpose To wake RF circuitry up in advance for faster response, easy and efficient power management and
precise ticks.

Syntax void setRFready()

Parameters ï

Return value ï

Output values ¶ RF IC is set on (the RF ready mode) but RX chain still stays off (unlike the RX mode). See IQRF
User's guide [1], RF IC modes.

¶ RF IC crystal oscillator starts up.

¶ OS system clock (tick) is based on precise RF IC crystal oscillator instead of MCU internal RC one.
However, MCU system clock always stays derived from internal RC oscillator.

Preconditions ï

Remarks After the RF wake-up the RX chain can be set on faster which enables faster checkRF , RFRXpacket

or RFTXpacket .

Side effects ï

See also setRFsleep , iqrfSleep , checkRF , RFTXpacket , RFRXpacket

Example setRFready(); // Wake the RF circuitry up from RF sleep in advance

 ...

RFTXpacket(); // for immediate response

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 8

 3.1.4 debug

Function Enter the debug mode

Purpose IQRF OS directly supports debugging and testing. It is possible to stop the application wherever you
need and display internal values (variables, RAM registers, EEPROM etc.) and then continue later on.

Syntax void debug()

Parameters ï

Return value ï

Output values OS directly returns no value but supports using W (PIC accumulator) to identify which of the debug

points is currently active.

Preconditions ¶ Debug should be used with corresponding development kit (e.g. CK-USB-04x) and the IQRF IDE [8]
development environment.

¶ To avoid possible HW collision with respect to user application, debug operates only under the
following conditions:

¶ Pins C5 to C8 are configured for SPI slave in respective TRIS bits (C8 out, the others in). It is

arranged by OS by default.

¶ The Check Mode function is enabled in IQRF IDE. Otherwise no communication on these pins is
initiated by debug tools even though TR is in debug mode until the Check Mode is enabled.

¶ SPI need not be enabled by enableSPI

¶ Timer6 is not automatically stopped and user interrupt is not automatically disabled in debug.

¶ When entering debug, the application must not have enabled interrupt from any of user peripherals.

¶ Debug must not be used within the user interrupt routine.

Remarks Number of debug instances is unlimited. The application is running until a debug function is

encountered. Then the program is stopped and the module is switched to the debug mode allowing
IQRF IDE to display values. The module stays in the debug mode until the user selects the Skip

Breakpoint button. Then the application program continues running until another debug function is

encouneterd and so on. See IQRF IDE [8] Help and Example E04-EEPROM [9].

Side effects ¶ param1 to param4 , memoryOffsetTo , memoryOffsetFrom and memoryLimit are not

displayed

¶ Watchdog is cleared while in Debug mode

See also ï

Example 1
if (compareBufferINFO2RF(4))

 W = 1; // M atch

else

 W = 2; // M ismatch

debug(); // Skip Breakpoint 1 or 2 will be displayed here according the result

Example 2
// Similar as Example 1 but utilizing macro breakpoint.

// See header file IQRF - macros.h.

if (compareBufferINFO2RF(4))

 {

 breakpoint(1); // M atch

 }

else

 {

 breakpoint(2); // M ismatch

 }

 // Skip Breakpoint 1 or 2 will be displayed here according the result

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 9

 3.1.5 getSupplyVoltage

Function Power supply measurement (up to 3.84 V)

Purpose Battery check

Syntax uns8 getSupplyVoltage()

Parameters ï

Return value level = 1, 2, é59 Voltage [V] = 261.12 / (127 - level)

Output values ï

Preconditions ï

Remarks ¶ Internal power supply voltage is checked.

¶ In case of TR modules with LDO it is the LDO output but not actual battery voltage. This value is
3.0 V typ. if battery is O.K. and drops down if battery is low.

¶ To evaluate the battery, take into consideration your battery type and power supply circuitry with
respect to diodes and other possible voltage drops.

Side effects A/D converter control registers are changed.

See also ï

Example if (getSupplyVoltage() < 38)

 é // Low battery

else

 é // Voltage > 2.93 V

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 10

 3.1.6 getTemperature

Function Read temperature from on-board sensor

Purpose Temperature measurement

Syntax uns8 getTemperature()

Parameters ï

Return value ¶ Temperature in ÁC, integer part, not rounded

¶ Negative temperatures are in two's complement format (e.g. 0xFB means -5 ÁC)

¶ 0x80 (-128 ÁC) indicates an error in communication with temperature sensor (temperature sensor

damaged or not present, i.e. for TR modules without the ñTò postfix, e.g. TR-72D.

Output values param3 : 12 b output value of the sensor in 0.0625 ÁC units. Thus, upper 8 b represent the integer part

of the temperature and lower 4 b represent the fractional part. The resolution is limited to 0.5 ÁC,
therefore the lowest 3 b are always cleared. Negative temperatures are in the two's complement
format. See datasheet of the temperature sensor [7].

Examples:

Temperature Return value param3 Temperature Return
value

param3

50 ÁC 0x32 0x320 0 ÁC 0x00 0x000

5 ÁC 0x05 0x050 -0.5 ÁC 0xFF 0xFF8

5.5 ÁC 0x05 0x058 -1 ÁC 0xFF 0xFF0

0.5 ÁC 0x00 0x008 -8 .5 ÁC 0xF7 0xF78

Preconditions ¶ Applicable for TR modules with MCP9808 (Microchip) temperature sensor only (e.g. not for TR-
76D).

¶ 300 ms delay is required in LP or XLP RX mode or after wake up from sleep

Remarks ¶ Resolution 0.5 ÁC, accuracy: 0.5 ÁC

¶ Takes about 3 ms.

¶ See Example E08ïTEMPERATURE [9].

Side effects ï

See also ï

Example 1 // For positive temperatures only

uns8 tempInt; // Temperature, integer part

uns8 tempFract; // Temperature, fractional part

tempInt = getTemperature();

tempFract = param3.low8 & 0x0F // Temperature == tempInt + tempFract/16

 // Temperature == param3 * 0.0625 in ÁC

Example 2
 // Either positive or negative temperatures, fractional part ignored

T = getTemperature(); // Integer part of temperature

if (T >= 0x80) {

 sign = " - "; // Negative

 T = (T ^ 0xFF) + 1; // Get absolute value in ÁC

}

else

 sign = "+"; // Positive

Example 3
 // Either positive or negative temperatures, with fractional part

if (getTemperature() >= 0x80) {

 sign = " - "; // Negative

 T = (param3 ^ 0xFFF) + 1; // Get absolute value, in 0.0625ÁC units

 }

else

 sign = "+"; // Positive

Example 4
 // Temperature measurement after wake - up from sleep

iqrfSleep();

waitDelay(30); // 300 ms delay required

T = getTemperature();

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 11

 3.2 Active (blocking) waiting

 3.2.1 waitMS

Function Wait specified number of miliseconds

Purpose Time delay generation

Syntax void waitMS(ms)

Parameters ms - time to wait in miliseconds (1 - 255)

Return value ï

Output values ï

Preconditions This function can be combined with waitDelay , startCapture and captureTicks .

Remarks ¶ This is an active waiting (on OS foreground). No other operation runs on OS foreground during
waiting.

¶ Time precission depends on internal RC oscillator. Thus, the delay can vary with temperature etc.
See respective PIC datasheet [6].

Side effects ï

See also waitDelay , startDelay , startLongDelay

Example waitMS(10); // Delay 10 ms. Program stays here for the whole 10 ms period

 ... // and continues here just after the period elapsed.

 3.2.2 waitDelay

Function Wait specified number of ticks

Purpose Time delay generation

Syntax void waitDelay(ticks)

Parameters ticks ï time to wait in 10 ms periods (1 - 255)

Return value ï

Output values ï

Preconditions ¶ This function can be combined with waitMS .

¶ This function must not be combined with startDelay and startLongDelay .

Remarks This is the active waiting (on OS foreground). No other operation runs on OS foreground during
waiting.

Side effects Internal ticks are based on internal RC oscillator if RF IC is sleeping. Thus, the delay can vary with
temperature etc. in this case. See respective PIC datasheet [6].

See also waitMS , startDelay , startLongDelay

Example 1 // LED on for 0.5 s

_LED = 1;

waitDelay(50); // Delay 500 ms. Program stays here for 500 ms

_LED = 0; // and continues here just after the period elapsed.

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 12

 3.2.3 waitNewTick

Function Wait for a new tick

Purpose Timing synchronization of user operations

Syntax void waitNewTick()

Parameters ï

Return value ï

Output values ï

Preconditions ï

Remarks Active waiting (on OS foreground) until a new tick starts. No other operation runs on OS foreground
during this waiting.

Side effects ï

See also waitMS , waitDelay

Example

 waitNewTick(); // To generate a 10 ms pulse as precise as possible

IO1 = 1;

 ... // Something shorter than 10 ms

waitNewTick(); // 10 ms

IO1 = 0;

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 13

 3.3 Timing on background

 3.3.1 startCapture

Function Reset and start the Capture timer

Purpose Initialization of time measurement or delay generation

Syntax void startCapture()

Parameters ï

Return value ï

Output values ï

Preconditions This function can be combined with waitMS .

Remarks Capture timer is a resettable counter of OS ticks (10 ms system intervals) running on OS background.
This function clears the counter and starts counting.

Side effects Functionality is affected by bondRequest Advanced , bondRequest , prebondNode ,

nodeAuthorization , bondNewNode, sendFRC, responseFRC , discovery ,

answerSystemPacket , RFRXpacket and RFTXpacket .

See also captureTicks

Example See captureTicks

 3.3.2 captureTicks

Function Get number of ticks counted from the last startCapture and captureTicks calling.

Purpose Measurement of elapsed time.

Syntax void captureTicks()

Parameters ï

Return value ï

Output value ¶ param3 : ticks counted from the last startCapture (0 - 65535)

¶ param4 : ticks counted from the last captureTicks or startCapture , whatever was the latest

 (0 - 65535)

Preconditions ¶ startCapture should be used at least once before.

¶ To ensure correct operation the counter must not overflow. That is why captureTicks should be

called max. ~655 s after last startCapture or captureTicks calling.

Remarks See Example E05ïDELAYS [9].

Side effects ¶ Functionality is affected by bondRequest Advanced , bondRequest , prebondNode ,

nodeAuthorization , bondNewNode, sendFRC, responseFRC , discovery ,

answerSystemPacket , RFRXpacket and RFTXpacket .

¶ Internal ticks are based on internal RC oscillator if RF IC is sleeping. Thus, the delay can vary with
temperature etc. in this case. See respective PIC datasheet [6].

See also startCapture , setRFready

Example startCapture(); // Reset counter of ticks

waitMS(200); // Delay 200 ms

captureTicks(); // param3 == 20 , param4 == 20

waitMS(150); // Delay 150 ms

captureTicks(); // param3 == 35, param4 == 15

startCapture(); // Reset counter of ticks

waitMS(100); // Delay 100 ms

captureTicks(); // param3 == 10, param4 == 10

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 14

 3.3.3 startDelay

Function Preset and start the Delay timer.

Purpose Initialization of time measurement or delay generation. Non-blocking alternative to waitDelay .

Syntax void startDelay(ticks)

Parameters uns8 ticks : number of ticks (10 ms system intervals) to be measured (1-255)

Return value ï

Output values ï

Preconditions This function can be combined with waitMS .

Remarks The Delay timer measures specified time period on OS background. Expiration can be checked by the

isDelay function.

Side effects ¶ This function does not work properly if the waitDelay function is active.

¶ Functionality is affected by bondRequest Advanced , bondRequest , prebondNode ,

nodeAuthorization , bondNewNode, sendFRC, responseFRC , discovery ,

answerSystemPacket , RFRXpacket and RFTXpacket .

¶ Internal ticks are based on internal RC oscillator if RF IC is sleeping. Thus, the delay can vary with
temperature etc. in this case. See respective PIC datasheet [6].

See also isDelay , startLongDelay , waitDelay

Example See isDelay

 3.3.4 startLongDelay

Function Preset and start the LongDelay timer

Purpose Initialization of time measurement or delay generation

Syntax void startLongDelay(ticks)

Parameters uns16 ticks : number of ticks (10 ms system intervals) to be measured (1-65535)

Return value ï

Output values ï

Preconditions This function can be combined with waitMS .

Remarks The Delay timer measures specified time period on OS background. Expiration can be checked by the

isDelay function.

Side effects ¶ This function does not work properly if the waitDelay function is active.

¶ Functionality is affected by bondRequest Advanced , bondRequest , prebondNode ,

nodeAuthorization , bondNewNode, sendFRC, responseFRC , discovery ,

answerSystemPacket , RFRXpacket and RFTXpacket .

¶ Delay in first tick can vary from 0 ms to 10 ms. If complete 10 ms is needed also in the first tick, use

waitNewTick firstly.

¶ Internal ticks are based on internal RC oscillator if RF IC is sleeping. Thus, the delay can vary with
temperature etc. in this case. See respective PIC datasheet [6].

See also isDelay , startDelay , waitDelay

Example See isDelay

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 15

 3.3.5 isDelay

Function Information whether the Delay timer has expired

Purpose Time measurement or delay generation

Syntax bit isDelay()

Parameters ï

Return value ¶ 1: Still in progress

¶ 0: Elapsed

Output values ï

Preconditions startDelay or startLongDelay should be used before.

Remarks ¶ The (Long)Delay timer measures specified time period. The result is available via the isDelay

function.

¶ Tip: the clrwdt instruction should be used to avoid unintentional watchdog reset during the delay.

¶ See Example E05ïDELAYS [9].

Side effects ï

See also startDelay , startLongDelay

Example 1 // LED on for 1 s

_LED = 1;

startDelay(100); // Start 1 sec delay counting on OS background

while (isDelay()) // Wait until the delay is over

{

 clrwdt(); // Any useful operation on OS foreground can be

 ... // performed during waiting

}

_LED = 0; // Continue here after 1 sec

Example 2 // LED on for 10 s

_LED = 1;

startLongDelay(1000); // Start 10 sec delay counting on OS background

while (isDelay()) // Wait until the delay is over

{

 clrwdt(); // Any useful operation on OS foreground can be

 ... // performed during waiting

}

_LED = 0; // Continue here after 10 sec

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 16

 3.4 LED indication

 3.4.1 setOnPulsingLED

Function LEDs On time setting (red as well as green)

Purpose Specification of the "On" time for LEDs (either for a single flash or for blinking)

Syntax void setOnPulsingLED(ticks)

Parameters uns8 ticks : number of ticks (10 ms system intervals) (1-255)

Return value ï

Output values ï

Preconditions ï

Remarks Default value is 5 (50 ms).

Side effects ï

See also setOffPulsingLED , pulsingLEDR , pulseLEDR , pulsingLEDG , pulseLEDG

Example See setOffPulsingLED

 3.4.2 setOffPulsingLED

Function LEDs Off time setting (red as well as green)

Purpose Specification of the "Off" time for LEDs (for blinking)

Syntax void setOffPulsingLED(ticks)

Parameters uns8 ticks : number of ticks (10 ms system intervals) (1-255)

Return value ï

Output values ï

Preconditions ï

Remarks Default value is 20 (200 ms).

Side effects ï

See also setOnPulsingLED , pulsingLEDR , pulsingLEDG

Example // Change blinking to 250 ms On / 750 ms Off

setOnPulsingLED(25); // 250 ms On

setOffPulsingLED(75); // 750 ms Off

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 17

 3.4.3 pulsingLEDR

Function Red LED blinking

Purpose Continuous red LED blinking on OS background

Syntax void pulsingLEDR()

Parameters ï

Return value ï

Output values ï

Preconditions ¶ Blinking times should be defined in advance by setOnPulsingLED and setOffPulsingLED .

¶ The appropriate PIC pin is configured as an output automatically.

¶ Do not combine this function with direct access to LED pin (see pulseLEDR Remarks). If omitted,

the pin state can be modified in background.

Remarks Blinking continues until it is stopped by the user (e.g. by stopLEDR).

Side effects ï

See also setOnPulsingLED , setOffPulsingLED , stopLEDR , pulseLEDR

Example 1 pulsingLEDR(); // continuous blinking on OS background

Example 2 // Blinking for 2 s

pulsingLEDR(); // blinking for 2 s on OS background

waitDelay(200); // 2 s delay generated on foreground

stopLEDR(); // Stop blinking

 3.4.4 pulseLEDR

Function Single red LED flash

Purpose Red LED flash on OS background

Syntax void pulseLEDR()

Parameters ï

Return value ï

Output values ï

Preconditions ¶ Flash time should be defined in advance by setOnPulsingLED .

¶ The appropriate PIC pin is configured as an output automatically.

¶ Do not combine this function with direct access to LED pin (see Remarks). If omitted, the pin state
can be modified in background.

Remarks The on-board LEDs can also be directly controlled on OS foreground using C commands for
manipulating the _LEDR output (the pin the red LED is connected to) and corresponding control bit

(TRISx.x - see IQRF- memory.h header file), e.g. _LEDR = 1 .

Side effects ï

See also setOnPulsingLED , pulsingLEDR , stopLEDR

Example setOnPulsingLED(10); // 100 ms On

pulseLEDR(); // Single red LED flash for 100 ms on OS background

 ... // Program continues immediately,

 // not waiting until the delay expires.

 // LED will be switched off after 100 ms automatically

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 18

 3.4.5 stopLEDR

Function Red LED off, blinking stopped

Purpose Stops the red LED activity on OS background

Syntax void stopLEDR()

Parameters ï

Return value ï

Output values ï

Preconditions Do not combine this function with direct access to LED pin (see pulseLEDR Remarks). If omitted, the

pin state can be modified in background.

Remarks ï

Side effects ï

See also pulsingLEDR , pulseLEDR

Example 1 pulsingLEDR(); // Start blinking on OS background

 ... // Blinking continues during any operation

stopLEDR(); // Stop blinking

Example 2 pulseLEDR(); // Red LED On on OS background

 ... // continuously lighting during any operation

 // until specified time expired

stopLEDR(); // or LED is switched Off by this command

Example 3 _LEDR = 1; // LEDR on

 ...

stopLEDR(); // LEDR off

 3.4.6 pulsingLEDG

Function Green LED blinking

Purpose Continuous green LED blinking on OS background

Syntax void pulsingLEDG()

Parameters ï

Return value ï

Output values ï

Preconditions ¶ Blinking times should be defined in advance by setOnPulsingLED and setOffPulsingLED .

¶ The appropriate PIC pin is configured as an output automatically.

¶ Do not combine this function with direct access to LED pin (see pulseLEDG Remarks). If omitted,

the pin state can be modified in background.

Remarks Blinking continues until it is stopped by the user (e.g. by stopLEDG).

Side effects ï

See also setOnPulsingLED , setOffPulsingLED , stopLEDG , pulseLEDG

Example 1 pulsingLEDG(); // continuous blinking on OS background

Example 2 // Blinking for 2 s

pulsingLEDG(); // blinking for 2 s on OS background

waitDelay(200); // 2 s delay generated on foreground

stopLEDG(); // Stop blinking

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 19

 3.4.7 pulseLEDG

Function Single green LED flash

Purpose Green LED flash on OS background

Syntax void pulseLEDG()

Parameters ï

Return value ï

Output values ï

Preconditions ¶ Flash time should be defined in advance by setOnPulsingLED .

¶ The appropriate PIC pin is configured as an output automatically.

¶ Do not combine this function with direct access to LED pin (see Remarks). If omitted, the pin state
can be modified in background.

Remarks The on-board LEDs can also be directly controlled on OS foreground using C commands for

manipulating the _LEDG output (the pin the green LED is connected to) and corresponding control bit

(TRISx.x - see IQRF- memory.h header file), e.g. _LEDG = 1 .

Side effects ï

See also setOnPulsingLED , pulsingLEDG , stopLEDG

Example setOnPulsingLED (10); // 100 ms On

pulseLEDG(); // Single green LED flash for 100 ms on OS background

 ... // Program continues immediately,

 // not waiting until the delay expires.

 // LED will be switched off after 100 ms automatically

 3.4.8 stopLEDG

Function Green LED off, blinking stopped

Purpose Stops the green LED activity on OS background

Syntax void stopLEDG()

Parameters ï

Return value ï

Output values ï

Preconditions Do not combine this function with direct access to LED pin (see pulseLEDG Remarks). If omitted, the

pin state can be modified in background.

Remarks ï

Side effects ¶ The appropriate PIC pin is not restored to the state before pulsingLEDG /pulseLEDG

¶ (TRISx.x == 0 , _LEDG == 0 after finishing on background).

¶ Possible user LEDR pin level (in PORT or LATCH register) changed in foreground can be overriden

in background.

See also pulsingLEDG , pulseLEDG

Example 1 pulsingLEDG(); // Start blinking on OS background

 ... // Blinking continues during any operation

stopLEDG(); // Stop blinking

Example 2
pulseLEDG(); // Green LED On on OS background

 ... // continuously lighting during any operation

 // until specified time expired

stopLEDG(); // or LED is switched Off by this command

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 20

 3.5 MCU EEPROM

 3.5.1 eeReadByte

Function Read one byte from specified location in EEPROM

Purpose Access to EEPROM

Syntax uns8 eeReadByte(address)

Parameters uns8 address : address in EEPROM (0 to 0xBF). See EEPROM map [2].

Return value ¶ Value (0 to 255) read from specified EEPROM location

¶ 0 when attempted to read from address 0xC0 or higher

Output values ï

Preconditions ï

Remarks ¶ Direct user access to EEPROM (using registers EECONx etc.) is not allowed for security reasons,

specialized OS functions are intended for this.

¶ EEPROM area dedicated to OS (locations 0xC0 or higher) is not accessible.

¶ See Example E04ïEEPROM [9].

Side effects ï

See also eeReadData , eeWriteByte , eeWriteData

Example 1 i = eeReadByte(0); // Copy 1 byte from EEPROM from address 0 to i

Example 2 // Illegal access: Avoid access to EEPROM locations 0xC0 or higher

i = eeReadByte(0xC8); // Reading from protected area is redirected to 0xA0

 3.5.2 eeReadData

Function Read a block of specified length from specified location in EEPROM to bufferINFO

Purpose Block access to EEPROM

Syntax void eeReadData(address, length)

Parameters ¶ uns8 address : address in EEPROM (0 to 0xBF - length + 1). See EEPROM map [2].

¶ uns8 length : number of bytes to be read (1 to 32)

Return value ï

Output values ¶ bufferINFO[0 to length ï 1]

¶ bufferINFO[0 to length ï 1] is cleared when attempted to read from address 0xC0 or

higher

Preconditions ï

Remarks ¶ Direct user access to EEPROM (using registers EECONx etc.) is not allowed for security reasons,

specialized OS functions are intended for this.

¶ EEPROM area dedicated to OS (locations 0xC0 or higher) is not accessible.

¶ See Example E04ïEEPROM [9].

Side effects ï

See also eeReadByte , eeWriteByte , eeWriteData

Example 1 eeReadData(0x0A, 16); // copy 16 B from EEPROM from address 0x0A to bufferINFO

 // bufferINFO[0] = EEPROM[0x0A]

 // ...

 // bufferINFO[15] = EEPROM[0x19]

Example 2 // Illegal access: Avoid access to EEPROM locations 0xC0 or higher

eeReadData(0xC8, 16); // EEPROM address 0xA0 u sed instead of protected area

 // bufferINFO[0] = EEPROM[0xA0]

 // ...

 // bufferINFO[15] = EEPROM[0xA0]

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 21

 3.5.3 eeWriteByte

Function Write one byte to specified location in EEPROM

Purpose Access to EEPROM

Syntax void eeWriteByte(address, data)

Parameters ¶ uns8 address : address in EEPROM (0xA0 to 0xBF for Coordinator and 0 to 0xBF for other

devices). See EEPROM map [2].

¶ uns8 data : value to be written (0 to 255)

Return value ï

Output values ï

Preconditions ï

Remarks ¶ Direct user access to EEPROM (using registers EECONx etc.) is not allowed for security reasons,

specialized OS functions are intended for this.

¶ EEPROM area dedicated to OS (locations 0xC0 or higher) is not accessible.

¶ See Example E04ïEEPROM [9].

¶ Any attempt to write to protected area above 0xBF leads to no operation.

Side effects ï

See also eeReadByte , eeReadData , eeWriteData

Example 1 eeWriteByte(0xBF, 0x75) // store 0x75 to EEPROM to address 0xBF

eeWriteByte(0x80, myVar) // copy myVar to EEPROM to address 0x80

Example 2 // Illegal access: Avoid access to EEPROM locations 0xC0 or higher

eeWriteByte(0xC6, 0x75); // Attempt to write to protected area ï nothing is

 // written.

 3.5.4 eeWriteData

Function Write a block of specified length from bufferINFO to specified location in EEPROM

Purpose Block access to EEPROM

Syntax void eeWriteData(address, length)

Parameters ¶ uns8 address : address in EEPROM . See EEPROM map [2].

¶ (0xA0 to 0xBF - length + 1) for Coordinator

¶ (0 to 0xBF - length + 1) for other devices

¶ uns8 length : number of bytes to be written from bufferINFO (1 to 32)

Return value ï

Output values ï

Preconditions ï

Remarks ¶ Direct user access to EEPROM (using registers EECONx etc.) is not allowed for security reasons,

specialized OS functions are intended for this.

¶ EEPROM area dedicated to OS (locations 0xC0 or higher) is not accessible.

See Example E04ïEEPROM [9].

Side effects Any attempt to write to protected area above 0xBF leads to no operation.

See also eeReadByte , eeReadData , eeWriteByte

Example 1 eeWriteData(0x0A,16); // copy 16 B from bufferINFO to EEPROM to address 0x0A

 // EEPROM[0x0A] = bufferINFO[0]

 // ...

 // EEPROM[0x19] = bufferINFO[15]

Example 2 // Illegal access: Avoid access to EEPROM locations 0xC0 or higher

eeWriteData(0xC8,16); // Attempt to write to protected area ï nothing is

 // written.

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 22

 3.6 Serial EEPROM

 3.6.1 eeeReadData

Function Read a data block of specified length from specified location in serial EEPROM to bufferINFO

Purpose Read from serial EEPROM

Syntax bit eeeReadData(address)

Parameters uns16 address : initial address in serial EEPROM (0 to 0x7FFF).

Return value ¶ 1: Read successful

¶ 0: Read unsuccessful (e.g. due to damaged or not populated memory device). Additionally,

the _eeeError flag is set.

Output values bufferINFO[0 to 63]

Preconditions ¶ memoryLimit specifies number of bytes (1 to 64) to be read. It must be set before every

eeeReadData call. If memoryLimit = = 0, complete 16 B is read.

¶ To respect accessible range, the following rule must be observed:

¶ address + memoryLimit < 0x8000 . See Example 2 and 3.

¶ Do not use for Coordinator in networks utilizing Discovery.

Remarks ¶ Memory range 0 to 0x7FFF is accessible.

¶ memoryLimit is automatically cleared after every eeeReadData call.

Side effects ï

See also eeeWriteData

Example 1 // To read 16 B

 // When memoryLimit is kept cleared from previous operations

eeeReadData(0x3C);

// copy 16 B from serial EEPROM from address 0x3C to bufferINFO

 // bufferINFO[0] = serial EEPROM[0x3C]

 // ...

 // bufferINF O[15] = serial EEPROM[0x4 B]

Example 2 memoryLimit = 40; // To read 40 B

eeeReadData(0x3C); // copy 40 B from serial EEPROM from address 0x3C to

 // bufferINFO

 // bufferINFO[0] = serial EEPROM[0x3C]

 // ...

 // bufferINFO[39] = serial EEPROM[0x63]

 // memoryLimit is automatically cleared here

Example 3 memoryLimit = 40; // To read 40 B

eeeReadData(0x7FEE); // Illegal usage, out of 0x7FFF boundary

Example 4 if (eeeReadData(0x0A))

 X = bufferINFO[0]

else

 {

 ... // Error handling

 }

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 23

 3.6.2 eeeWriteData

Function Write a data block of specified length from bufferINFO to specified location in EEPROM

Purpose Write to serial EEPROM

Syntax bit eeeWriteData(address)

Parameters uns16 address : initial address in serial EEPROM

¶ For Coordinator in networks not utilizing Discovery and for Nodes: 0 to 0x7FFF

¶ For Coordinator in networks utilizing Discovery: 0x800 to 0x7FFF . This range may be a subject to

change in future IQRF OS versions based on added functionality.

Return value ¶ 1 Write successful

¶ 0 Write unsuccessful (e.g. due to damaged or not populated memory device). Additionally, the

 _eeeError flag is set.

Output values Memory range 0 to 0x7FFF is accessible.

Preconditions ¶ memoryLimit specifies number of bytes (1 to 64) to be written. It must be set before every

eeeWriteData call. If memoryLimit = = 0, complete 16 B is written.

¶ address and memoryLimit must be selected so as the addressed space fits within a single 64 B

long page, e.g. 0 ï 0x3F , 0x40 ï 0x7F, é, 0x7FFC0 ï 0x7FFF . See Example 3, 4 and 5.

Remarks memoryLimit is automatically cleared after every eeeWriteData call.

Side effects ï

See also eeeReadData

Example 1 // To write 16 B

 // When memoryLimit is kept cleared from previous operations

eeeWriteData(0x40); // copy 16 B from bufferINFO to serial EEPROM

 // from address 0x40

 // EEPROM[0x40] = bufferINFO[0]

 // ...

 // EEPROM[0x4F] = bufferINFO[15]

Example 2 // To write 64 B

memoryLimit = 64;

eeeWriteData(0x40); // copy 64 B from bufferINFO to serial EEPROM

 // from address 0x40

 // EEPROM[0x40] = bufferINFO[0]

 // ...

 // EEPROM[0x7F] = bufferINFO[63]

Example 3 memoryLimit = 6; // To write 6 B

eeeWriteData(0x40); // copy 6 B from bufferINFO to serial EEPROM from

 // address 0x40

 // EEPROM[0x40] = bufferINFO[0]

 // ...

 // EEPROM[0x45] = bufferINFO[5]

 // memoryLimit is automatically clea red here

Example 4 // To write 64 B

memoryLimit = 64;

eeeWriteData(0x41); // Illegal access, boundary 0x80 crossed

Example 5 memoryLimit = 6; // to write 6 B

eeeWriteData(0x2C7E); // Illegal access, boundary 0x2C80 crossed

Example 6 memoryLimit = 1; // To write 1 B

bufferINFO[0] = 'A'

if (!eeeWriteData(0x0A))

 ... // Error handling

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 24

 3.7 RAM

 3.7.1 readFromRAM

Function Read one byte from specified location in RAM

Purpose Indirect access to RAM registers

Syntax uns8 readFromRAM(address)

Parameters uns16 address : linear or traditional memory location address

Return value Value read from specified location

Output values ï

Preconditions ï

Remarks See Example E06ïRAM [9].

Side effects FSR0 register is modified.

See also writeToRAM , copyMemoryBlock , getINDF0 , getINDF1

Example for (i=0; i<5; i++)

{

 A = readFromRAM(bufferRF + i);

 é

}

 3.7.2 writeToRAM

Function Write one byte to specified location in RAM

Purpose Indirect access to RAM registers

Syntax void writeToRAM(address, value)

Parameters ¶ uns16 address : traditional or linear memory location address

¶ uns8 value : value to be written

Return value ï

Output values ï

Preconditions Avoid writing to RAM areas dedicated to OS and to PIC special function registers otherwise OS can
collapse. See RAM map [2].

Remarks RAM can be accessed either directly (using common C commands like X = Y;) or indirectly. But

indirect writng to the INDFx registers is not allowed. Due to security reasons all instructions writng to

INDFx are removed during Upload. To avoid unintended behavior, all constructions writng to INDFx

(either by the user or by the compiler) should be omitted. Instead of this IQRF OS provides complete

support for indirect RAM addressing using extra system functions readFromRAM, writeToRAM and

copyMemoryBloc k . See Example E06ïRAM [9].

Side effects FSR0 register is modified.

See also readFromRAM, copyMemoryBlock , setINDF0 , setINDF1

Example 1 // Not allowed. The compiler uses INDFx in such cases.

for (i=0; i<5; i++)

 bufferRF[i] = i;

Example 2 // Correct

for (i=0; i<5; i++)

 writeToRAM(bufferRF + i, i);

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 25

 3.7.3 setINDF0

Function Write a value in the virtual INDF0 register

Purpose Indirect write to RAM

Syntax void setINDF0(value)

Parameters uns8 value : value to be written

Return value ï

Output values Register addressed by the FSR0H and FSR0L is modified

Preconditions ¶ FSR0 (the FSR0H and FSR0L register pair) must be set before to define a destination. Traditional as

well as linear address can be used.

¶ Avoid writing to RAM areas dedicated to OS and to PIC special function registers otherwise OS can
collapse. See RAM map [2].

Remarks ¶ Simple writing to the INDF0 virtual register is not allowed. Due to security reasons all instructions

using INDF0 are removed during Upload. To avoid unintended behavior all constructions modifying

INDF0 (either by the user or by the compiler) should be omitted. Instead of this IQRF OS allows to

write to indirectly addressed RAM using extra system function setINDF0. See Example E06ïRAM
[9].

¶ Another possibility (but more code consuming) is using the writeToRAM function.

Side effects ï

See also setINDF1 , getINDF0 , getINDF1 , writeToRAM , copyMemoryBlock

Example See getINDF0 (by analogy with INDF1)

 3.7.4 setINDF1

Function Write a value in the virtual INDF1 register

Purpose Indirect write to RAM

Syntax void setINDF1(value)

Parameters uns8 value : value to be written

Return value ï

Output values Register addressed by the FSR1H and FSR1L is modified

Preconditions ¶ FSR1 (the FSR1H and FSR1L register pair) must be set before to define a destination. Traditional as

well as linear address can be used.

¶ Avoid writing to RAM areas dedicated to OS and to PIC special function registers otherwise OS can
collapse. See RAM map [2].

Remarks ¶ Simple writing to the INDF1 virtual register is not allowed. Due to security reasons all instructions

using INDF1 are removed during Upload. To avoid unintended behavior all constructions modifying

INDF1 (either by the user or by the compiler) should be omitted. Instead of this IQRF OS allows to

write to indirectly addressed RAM using extra system function setINDF1. See Example E06ïRAM
[9].

¶ Another possibility (but more code consuming) is using the writeToRAM function.

Side effects ï

See also setINDF0 , getINDF0 , getINDF1 , writeToRAM , copyMemoryBlock

Example See getINDF0

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 26

 3.7.5 getINDF0

Function Read a value in the INDF0 virtual register. Obsolete. See Remarks and Examples.

Purpose Indirect read from RAM

Syntax uns8 getINDF0()

Parameters ï

Return value Value of the register addressed by the FSR0H and FSR0L

Output values ï

Preconditions FSR0 (the FSR0H and FSR0L register pair) must be set before to define a destination. Traditional as

well as linear address can be used.

Remarks ¶ See Example E06ïRAM [9].

¶ Additionally, simple reading the INDF0 virtual register is allowed. This is even less memory

consuming than getINDF0 . See Example 2 below.

¶ Another possibility is using the readFromRAM function.

¶ getINDF0 can advantageously be replaced by direct reading, e.g. X = INDF0; See Example 2.

Side effects ï

See also setINDF0 , setINDF1 , getINDF1 , readFromRAM, copyMemoryBlock

Example 1 // Not allowed

FSR0 = ADDR_FROM;

FSR1 = ADDR_TO;

for(i = 0; i < 16; i++)

{

 X = INDF0; // Allowed

 INDF1 = X; // Illegal writing to INDF1 (see setINDF1)

 FSR0++;

 FSR1++;

}

Example 2 // Allowed

FSR0 = ADDR_FROM;

FSR1 = ADDR_TO;

for(i = 0; i < 16; i++)

{

 X = INDF0; // Allowed (and recommended)

 setINDF1(X);

 FSR0++;

 FSR1++;

}

Example 3 // Also correct but more memory consuming

FSR0 = ADDR_FROM;

FSR1 = ADDR_TO;

for(i = 0; i < 16; i++)

{

 X = getINDF0();

 setINDF1(X);

 FSR0++;

 FSR1++;

} // Result is the same as copyMemoryBlock(ADDR_FROM, ADDR_TO, 16)

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 27

 3.7.6 getINDF1

Function Read a value in the INDF1 virtual register. Obsolete. See Remarks and Example.

Purpose Indirect read from RAM

Syntax uns8 getINDF1()

Parameters ï

Return value Value of the register addressed by the FSR1H and FSR1L

Output values ï

Preconditions FSR1 (the FSR1H and FSR1L register pair) must be set before to define a destination. Traditional as

well as linear address can be used.

Remarks See Example E06ïRAM [9].

Additionally, simple reading the INDF1 virtual register is allowed. This is even less memory consuming

than getINDF1 . See getINDF0 , Example 2 .

Another possibility is using the readFromRAM function.

getINDF1 can advantageously be replaced by direct reading,

 e.g. X = getINDF1; See getINDF0 , Example 2.

Side effects ï

See also setINDF0 , setINDF1 , getINDF0 , readFromRAM, copyMemoryBlock

Example See getINDF0 (by analogy with INDF1)

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 28

 3.8 Buffers

All functions for copying buffers (copyBufferINFO2RF , copyBufferINFO2COM , copyBufferRF2COM ,

copyBufferRF2INFO , copyBufferCOM2RF , copyBufferCOM2INFO) can use offsets memoryOffsetFrom and

memoryOffsetTo . Offsets are applied when at least one of them is different from zero only. Then the following principle

will take place: memoryOffsetFrom specifies relative offset in the From buffer and memoryOffsetTo specifies relative

offset in the To buffer. It means that data is not read starting from bufferXX[0] but from

bufferXX[memoryOffsetFrom] and is not stored starting from bufferYY [0] but from

bufferYY[memoryOffsetTo] . Just the final part of the bufferXX is copied (from memoryOffsetFrom up to the end

of the bufferXX or bufferYY , whichever is reached first, further optionally reduced by memoryLimit). In addition to

this, the memoryLi mit variable can be used to specify number of bytes to be transferred.

If both memoryOffsetFrom = 0 and memoryOffsetTo = 0 , complete buffers (optionally reduced by memoryLimit)

are copied . Offsets and the memoryLimit are default disabled (cleared after reset as well as after every buffer copy).

 3.8.1 copyBufferINFO2COM

Function Copy bufferINFO to bufferCOM

Purpose Data transfer between buffers

Syntax void copyBufferINFO2COM()

Parameters ï

Return value ï

Output values ï

Preconditions Offsets memoryOffsetFrom and memoryOffsetTo are applied (see above).

Remarks ¶ If memoryOffsetFrom = 0 , memoryOffsetTo = 0 and memoryLimit = 0 , complete 64 B is

copied.

¶ See Example E06 - RAM [9].

Side effects ï

See also clearBufferINFO , copyBufferINFO2RF , copyBuffe rRF2COM, copyBufferRF2INFO ,

copyBufferCOM2RF , copyBufferCOM2INFO , compareBufferINFO2RF , copyMemoryBlock

Example 1 copyBufferINFO2COM();

Example 2 memoryOffsetFrom = 0; // bufferINFO to be copied

memoryOffsetTo = 10; // to bufferCOM starting from bufferCOM[10].

copyBufferINFO2COM; // Just first 54 B is copied (until bufferCOM full).

Example 3 memoryOffsetFrom = 0; // bufferINFO to be copied

memoryOffsetTo = 10; // to bufferCOM starting from bufferCOM[10].

memoryLimit = 20;

copyBufferINFO2COM; // Just first 20 B is copied (due to memoryLimit).

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 29

 3.8.2 copyBufferINFO2RF

Function Copy bufferINFO to bufferRF

Purpose Data transfer between buffers

Syntax void copyBufferINFO2RF()

Parameters ï

Return value ï

Output values ï

Preconditions Offsets memoryOffsetFrom and memoryOffsetTo are applied (see above).

Remarks ¶ If memoryOffsetFrom = 0 , memoryOffsetTo = 0 and memoryLimit = 0 , complete 64 B is

copied.

¶ See Example E06 - RAM [9].

Side effects ï

See also clearBufferINFO , copyBufferINFO2COM , copyBufferRF2COM , copyBufferRF2INFO ,

copyBufferCOM2RF , copyBufferCOM2INFO , compareBufferINFO2RF , copyMemoryBlock

Example copyBufferINFO2RF();

 3.8.3 copyBufferRF2COM

Function Copy bufferRF to bufferCOM

Purpose Data transfer between buffers

Syntax void copyBufferRF2COM()

Parameters ï

Return value ï

Output values ï

Preconditions Offsets memoryOffsetFrom and memoryOffsetTo are applied (see above).

Remarks ¶ If memoryOffsetFrom = 0 , memoryOffsetTo = 0 and memoryLimit = 0 , complete 64 B is

copied.

¶ See Example E06 - RAM [9].

Side effects ï

See also clearBufferINFO , copyBufferINFO2RF , copyBufferINFO2COM , copyBufferRF2INFO ,

copyBufferCOM2RF , copyBufferCOM2INFO , compareBufferINFO2RF , copyMemoryBlock

Example copyBufferRF2COM();

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 30

 3.8.4 copyBufferRF2INFO

Function Copy bufferRF to bufferINFO

Purpose Data transfer between buffers

Syntax void copyBufferRF2INFO()

Parameters ï

Return value ï

Output values ï

Preconditions Offsets memoryOffsetFrom and memoryOffsetTo are applied (see above).

Remarks ¶ Copying is limited up to first 64 B of bufferRF only.

¶ If memoryOffsetFrom = 0 , memoryOffsetTo = 0 and memoryLimit = 0 , complete 64 B is

copied.

¶ See Example E06 - RAM [9].

Side effects ï

See also clearBufferINFO , copyBufferINFO2COM , copyBufferINFO2RF , copyBufferRF2COM ,

copyBufferCOM2RF , copyBufferCOM2INFO , compareBufferINFO2RF , copyMemoryBloc k

Example copyBufferRF2INFO();

 3.8.5 copyBufferCOM2RF

Function Copy bufferCOM to bufferRF

Purpose Data transfer between buffers

Syntax void copyBufferCOM2RF()

Parameters ï

Return value ï

Output values ï

Preconditions Offsets memoryOffsetFrom and memoryOffsetTo are applied (see above).

Remarks ¶ If memoryOffsetFrom = 0 , memoryOffsetTo = 0 and memoryLimit = 0 , complete 64 B is

copied.

¶ See Example E06 - RAM [9].

Side effects ï

See also clearBufferINFO , copyBufferINFO2COM , copyBufferINFO2RF , copyBufferRF2COM ,

copyBufferRF2INFO , copyBufferCOM2INFO , compareBufferINFO2RF , copyMemoryBlo ck

Example copyBufferCOM2RF();

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 31

 3.8.6 copyBufferCOM2INFO

Function Copy bufferCOM to bufferINFO

Purpose Data transfer between buffers

Syntax void copyBufferCOM2INFO()

Parameters ï

Return value ï

Output values ï

Preconditions Offsets memoryOffsetFrom and memoryOffsetTo are applied (see above).

Remarks ¶ If memoryOffsetFrom = 0 , memoryOffsetTo = 0 and memoryLimit = 0 , complete 64 B is

copied.

¶ See Example E06 - RAM [9].

Side effects ï

See also clearBufferINFO , copyBufferINFO2COM , copyBufferINFO2RF , copyBufferRF2COM ,

copyBufferRF2INFO , copyBufferCOM2RF , copyMemoryBlock

Example copyBufferCOM2INFO();

 3.8.7 compareBufferINFO2RF

Function Compare bufferINFO and bufferRF with respect to specified length

Purpose Buffer comparison

Syntax bit compareBufferINFO2RF(length)

Parameters uns8 length : number of bytes to be compared (1 to 64)

Return value ¶ 1 ï Match

¶ 0 ï Mismatch

Output values ï

Preconditions ï

Remarks ¶ Comparing is limited up to first 64 B of bufferRF only.

¶ If memoryOffsetFrom = 0 , memoryOffsetTo = 0 and memoryLimit = 0 , complete 64 B is

compared.

¶ See Example E06 - RAM [9].

Side effects ï

See also clearBufferINFO , copyBufferINFO2RF , copyBuff erRF2INFO , swapBufferINFO

Example if (!compareBufferINFO2RF(32)) // Compare 32 B

 then Error = 1; // Error if mismatch

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 32

 3.8.8 swapBufferINFO

Function Swap bufferINFO and bufferAUX

Purpose Temporary bufferINFO saving

Syntax void swapBufferINFO()

Parameters ï

Return value ï

Output values Content of bufferINFO and bufferAUX (64 B) is swapped. See Example E06 - RAM [9].

Preconditions ï

Remarks ï

Side effects ï

See also moduleInfo , appInfo

Example swapBufferInfo(); // Temporarily save bufferInfo to bufferAUX

appInfo(); // Get user data from EEPROM

...

swapBufferInfo(); // and restore previous data in bufferInfo

 3.8.9 clearBufferINFO

Function Clear bufferINFO

Purpose bufferINFO clearing

Syntax void clearBufferINFO()

Parameters ï

Return value ï

Output values ï

Preconditions ï

Remarks Complete bufferINFO (64 B) is cleared (filled with zeros). See Example E06 - RAM [9].

Side effects ï

See also copyBufferINFO2COM , copyBufferINFO2RF , copyBufferRF2INFO , copyBufferCOM2INFO ,

compareBufferINFO2RF , copyMemoryBlock , swapBufferINFO

Example clearBufferINFO();

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 33

 3.8.10 clearBufferRF

Function Clear bufferRF

Purpose bufferRF clearing

Syntax void clearBufferRF()

Parameters ï

Return value ï

Output values ï

Preconditions ï

Remarks Complete bufferRF is cleared (filled with zeros). See Example E06 - RAM [9].

Side effects ï

See also copyBufferRF2COM , copyBufferRF2INFO , copyBufferCOM2RF , copyBufferINFO2RF ,

compareBufferINFO2RF , copyMemoryBlock

Example clearBufferRF();

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 34

 3.9 Data blocks

 3.9.1 copyMemoryBlock

Function Copy specified RAM block to specified location

Purpose Copy memory block within RAM

Syntax void copyMemoryBlock (from, to, length)

Parameters ¶ uns16 from : starting address of the block to be copied

¶ uns16 to : destination address

¶ uns8 length : block length in bytes

Return value ï

Output values ï

Preconditions ¶ Either traditional or linear addresses can be used.

¶ Upward overlapping the source and the destination RAM blocks being copied is not allowed.

¶ Avoid writing to RAM areas dedicated to OS otherwise OS can collapse. See the RAM map [2].

Remarks See RAM map [2] and Example E06 - RAM [9].

Side effects FSR0 and FSR1 registers are modified.

See also writeToRAM , readFromRAM, setINDF0 , getINDF0 , setINDF1 , getINDF1

Example 1 copyMemoryBlock(0x2390, 0x23C0, 10); // copy 10 B block from 0x2390 to 0x23C0

Example 2 copyMemoryBloc k(bufferRF+10, bufferCOM+1, 8); // 8 bytes copied:

 // bufferCOM[1] = bufferRF[10] ... bufferCOM[8] = bufferRF[17]

Example 3 copyMemoryBlock(array+0, array+1, sizeof(array) ï1); // Upward, not allowed

Example 4 copyMemoryBlock(ar ray+1, array+0, sizeof(array) - 1); // Downward, allowed

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 35

 3.9.2 moduleInfo

Function Store Module data to bufferINFO

Purpose Get information about transceiver module and OS

Syntax void moduleInfo()

Parameters ï

Return value ï

Output values bufferINFO[0 to 7] :

Address in bufferInfo 0 1 2 3 4 5 6 7

Meaning
Serial number

OS version TR type OS build
Module ID

Serial number (Module ID): 4 B identification code unique for each TR module.

DCTR identification:
 The most significant bit of Module ID:
 0: TR (fully programmable, General HWP not allowed)
 1: DCTR (fully programmable, General HWP allowed)

OS version:
 Upper nibble (4 b): Major version
 Lower nibble (4 b): Minor version. Postfix "D" is not stated in Module identification but can be
 recognized by MCU type ("D" for PIC16LF1938).

TR type:

Bit 7 6 5 4 3 2 1 0

Meaning TR series FCC MCU type

 TR series FCC MCU type
 0: (DC)TR-52D 0: FCC not certified 4: PIC16F1938
 1: (DC)TR-58D-RJ 1: FCC certified
 2: (DC)TR-72D
 3: (DC)TR-53D
 8: (DC)TR-54D
 9: (DC)TR-55D
 10: (DC)TR-56D
 11: (DC)TR-76D

OS build: OS subversion.

Examples (all in hexadecimal):

 [0] [1] [2] [3] [4] [5] [6] [7]

buffe rINFO[0 ï7] = 1C 10 00 01 38 24 39 11

Meaning: Module ID = 0100101C , TR, IQRF OS version 3.08D, TR-72D, PIC16LF1938, FCC not

 certified, OS build 0x1139 .

buffe rINFO[0 ï7] = 1C 10 00 81 38 BC 39 11

Meaning: Module ID = 810 0101C, DCTR, IQRF OS version 3.08D, TR-76D, PIC16LF1938,

 FCC certified, OS build 0x1139 .

Preconditions ï

Remarks ¶ Tip: The most significant bit in TR series can be used to differentiate between TR modules with
shared and not shared MCU pins on the Cx SIM pads, e.g. TR-72D (shared) vs. TR-76D (not
shared).

¶ Module data can also be read by SPI master. See the IQRF SPI specification [3].

Side effects bufferINFO[8 to 63] is modified.

See also appInfo

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 36

Example 1
uns24 SN @ bufferInfo;

uns8 OSv @ bufferInfo[4];

moduleInfo(); // Now SN == module serial number

 // and OSv == OS version

Example 2
moduleInfo();

if (bufferInfo[5].7 == 0)

 ... // MCU pins are shared (e.g. RC5 and RC7 to TR pin C8 etc.)

 else

 ... // MCU pins are not shared (e.g. RC5 and RC7 to TR pin C8 etc.)

 // See simplified circuit diagram in TR datasheets

 3.9.3 appInfo

Function Store Application information from EEPROM to bufferINFO

Purpose Get information about user application

Syntax void appInfo()

Parameters ï

Return value ï

Output values bufferINFO[0 to 31]

Preconditions ï

Remarks See IQRF OS User's guide [1], chapter Identification and Appendix Memory maps.

Side effects ï

See also moduleInfo

Example 1 appInfo(); // Copy Application info from EEPROM to bufferINFO

copyBufferINFO2RF(); // and then to bufferRF

Example 2 #pragma packedCdataStrings 0 // Application data to EEPROM after compilation

#pragma cdata[__EEAPPINFO] = "Application data, I'm user #01 "

bufferINFO[0] = ó2ô; // Dynamic change of application data

eeWriteData(__EEAPPINFO+29,1); // #01 changed to #02

appInfo(); // "Application data, I'm user #02 " is read

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 37

 3.10 SPI

 3.10.1 enableSPI

Function Activate SPI communication module and related pins

Purpose Enable SPI communication

Syntax void enableSPI()

Parameters ï

Return value ï

Output values SPI Status is switched to SPI ready, communication mode.

Preconditions ï

Remarks ¶ The PIC internal SPI hardware module and appropriate pins (C5 to C8 or Q6, Q7, Q8 and Q11) are
configured and activated as SPI Slave.

¶ See SPI Implementation in IQRF TR modules [3] and Example E07-SPI [9].

Side effects Related pins can not be used as general I/Os until SPI is disabled via disableSPI .

See also disableSPI , startSPI , stopSPI , getStatusSPI , restartSPI

Example See getStatusSPI

 3.10.2 disableSPI

Function Switch SPI HW module off and configure SPI pins as I/Os

Purpose Disable SPI communication

Syntax void disableSPI()

Parameters ï

Return value ï

Output values SPI Status is switched to SPI not active.

Preconditions ï

Remarks The PIC internal SPI hardware module is disabled and related pins (C5 to C8 or Q6, Q7, Q8 and Q11)
are reconfigured as general I/Os. See SPI Implementation in IQRF TR modules [3] and Example E07-
SPI [9].

Side effects ¶ The appropriate PIC pins are not restored to the state before enableSPI calling.

¶ Current packet is lost by both sides if SPI communication is running on background at this moment.

See also enableSPI , startSPI , stopSPI , getStatusSPI , restartSPI

Example See getStatusSPI

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 38

 3.10.3 startSPI

Function Indicate ready to Master.

Purpose ¶ Initiate SPI packet transmission from Slave (request to Master). Provide data from bufferCOM to

Master according to Master's clock (on OS background).

¶ startSPI(0) indicates to Master that the Slave is ready to receive data (bufferCOM not full).

Syntax void startSPI(length)

Parameters uns8 length : number of bytes to be sent (0 to 64)

Return value ï

Output values SPI Status is switched to:

¶ SPI data ready ï after startSPI(1 to 64)

¶ SPI ready, Communication mode ï after startSPI(0).

Preconditions ¶ SPI must be enabled by the enableSPI function before.

¶ startSPI must not be combined with functions changing bufferCOM , e.g. discovery

Remarks ¶ SPI runs on OS background.

¶ startSPI(0) is also useful for recovering SPI from communication failures (e.g. the CRC

mismatch).

¶ See SPI Implementation in IQRF TR modules [3] and Example E07-SPI [9].

Side effects ï

See also enableSPI , disableSPI , stopSPI , getStatusSPI , restartSPI

Example 1 // Slave - > Master

bufferCOM[0] = "I";

bufferCOM[1] = "Q";

enableSPI();

startSPI(2); // Request to Master is active on backgroung from now

 ... // and the program just continues here

Example 2 startSPI(0); // Reset SPI communication

Example 3 See getStatusSPI

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 39

 3.10.4 stopSPI

Function Stop SPI communication

Purpose Suspend SPI transmissions whenever it suits to Slave

Syntax void stopSPI()

Parameters ï

Return value ï

Output values SPI Status is switched to User stop.

Preconditions ï

Remarks ¶ stopSPI is useful e.g. to avoid violation during preparation data to bufferCOM .

¶ SPI transmission is stopped but SPI remains active (enabled). Communication can continue after

next startSP I .

¶ stopSPI is not needed after successful SPI reception to protect data received in bufferCOM . Data

is protected by OS (and SPI status stays in mode 3F) until the slave allows further communication

e.g. by the startSPI (0) .

¶ startSPI and stopSPI are not fully complementary. Receiving is allowed just after enableSPI

without previous startSPI , startSPI is meaningful after previous startSPI not followed by

stopSPI etc.

¶ See SPI Implementation in the IQRF TR modules [3] and Example E07-SPI [9].

Side effects Current packet is lost by both sides if SPI communication is running on background at this moment.

See also enableSPI , disableSPI , startSPI , getStatusSPI , restartSPI

Example if (!getStatusSPI()) // If SPI is not in progress

{

 stopSPI(); // Prohibit Master from transmitting

 // (not to destroy bufferCOM in background)

 bufferCOM[0] = ... // Prepare data to send

 bufferCOM[1] = ...

 startSPI(2); // Request to send

}

 3.10.5 restartSPI

Function Indicate ready to continue SPI transfer to Master .

Purpose Allow to continue SPI transmission (request to Master).

Syntax void restartSPI()

Parameters ï

Return value ï

Output values

Preconditions Intended after preceeding stopSPI .

Remarks SPI can continue from the state just before stopSPI .

Side effects ï

See also startSPI , stopSPI

Example startSPI(16); // SPI started

 ...

stopSPI(); // SPI stopped temporarily

 ... // to make some operations

restartSPI(); // and allow to continue

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 40

 3.10.6 getStatusSPI

Function Update SPI flags and packet length and check whether SPI is busy

Purpose Provide application program with information about current SPI status

Syntax bit getStatusSPI()

Parameters ï

Return value ¶ 1 ï SPI busy

¶ 0 ï SPI not busy

Output values ¶ SPIpacketLength : received packet length

¶ param2.3 (_SPIRX) : 1 ï Something received on SPI.

¶ param2.4 (_SPICRCok) : 1 ï The last received SPI CRCM was O.K.

Preconditions SPI must be enabled by enableSPI

Remarks ¶ Output values (param2) has different format than SPI status sent to the Master.

¶ See SPI Implementation in IQRF TR modules [3] and Example E07-SPI [9].

Side effects ï

See also enableSPI , disableSPI , startSPI , stopSPI , restartSPI

Example 1 // Master - > Slave

 enableSPI(); // Master is allowed to transmit from now

Receive:

 clrwdt();

 if (getStatusSPI()) // Wait until SPI is not busy

 goto Receive;

 if (_SPIRX) // Anything received?

 { // Yes:

 if (!_SPICRCok) // CRCM matched?

 { // No:

 sta rtSPI(0); // Restart SPI

 goto Receive; // and try to receive again.

 }

 // Yes:

 // BufferCOM is automatically protected now

 // not to be overwritten by next SPI packet.

 // Thus, stopSPI is not necessary here.

 // Packet length is in SPIpacketLength.

 copyBufferCOM2INFO(); // Store received packet

 startSPI(0); // and then allow Master to transmit again.

 }

 else

 goto Receive; // Nothing receiv ed yet

// ... Continue here after successful receiving

 waitMS(1); // Time for finishing startSPI(0) on background

 disableSPI(); // otherwise Master's CRCS check fails.

 // The delay depends on Master application.

Example 2 enableSPI();

startSPI(2); // 2 B to send to master

while (getStatusSPI()) // Wait until SPI is not busy

 waitMS(1);

... // Now the transfer is finished

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 41

 3.11 RF

 3.11.1 setRFpower

Function Set RF output power

Purpose Change RF range

Syntax void setRF power(level)

Parameters uns8 level : 0 (min.) to 7 (max. ï default)

See datasheet of TR module [4].

Return value ï

Output values Available read only in the RFpower register

Preconditions ï

Remarks ï

Side effects ï

See also RFTXpacket

Example set RFpower(7); // Max. RF output power

 3.11.2 setRFspeed

Function Select RF bit rate. Not implemented yet. Do not use this function. Bit rate 19.836 kb/s is fixed.

Purpose Select RF bit rate

Syntax void setRFspeed(speed)

Parameters uns8 speed :

Return value ï

Output values Available read only in the RFspeed register

Preconditions Bit rates different from 19.836 kb/s are preliminary, for experimental purpose only.

Remarks ¶ Non-default bit rates are provisionally intended for experimental purposes only.

¶ Routing is supported for 19.836 kb/s only

Side effects RF channel must be specified after every bit rate change.

See also setRFchannel

Example 1 setRFspeed(1); // 1.2 kb/s selected

setRFchannel(...); // channel must be selected then

Example 2 setRFspeed(2); // 19.836 kb/s selected

setRFchannel(...); // channel must be selected then

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 42

 3.11.3 setRFband

Function Select RF frequency band. Obsolete. RF band should be selected in TR module configuration.

Purpose Select 868 MHz or 916 MHz band

Syntax void setRFband(band)

Parameters uns8 band:

¶ 0 868 band MHz (default)

¶ 1 916 band MHz

Return value ï

Output values Flag _916MHz in the userInterface register:

_916MHz: 0 ï 868 MHz band

 1 ï 916 MHz band

Preconditions ¶ This function is not implemented for TR modules with fixed band (e.g. TR-7xD-433).

¶ To ensure compatibility with future OS versions, it is not recommended to use this function. RF
band should be configured in IQRF IDE [8] (TR Configuration).

Remarks Default RF band and channel after reset are set according to TR Configuration.

Side effects RF channel must be specified after every band change.

See also setRFchannel

Example1 setRFband(1); // 916 MHz band selected

Example2 setRFband(0); // 868 MHz band selected

 3.11.4 setRFchannel

Function Set RF channel

Purpose Select free RF channel for not interfered communication

Syntax void setRFchannel(channel)

Parameters ¶ uns8 channel : see IQRF OS User's guide [1], Appendix 2, Channel map

¶ Default:

¶ 868 MHz band: 52
 Default channel can be changed by TR Configuration in IQRF IDE [8].

Return value ï

Output values Available read only in the RFchannel register

Preconditions To avoid interferences between adjacent RF channels, the selection should respect the following rules
(typical, in most cases):

¶ STD mode: There are no interferences even between very adjacent channels.

¶ LP or XLP modes: 10 channels spacing is required at worst case.
Channels not interfering each other can be used in two overlapping IQRF networks transmitting at the
same time. Interferences between two IQRF transceivers in LP or XLP modes significantly decrease
with the distance between those transceivers.
Examples for interference between two IQRF transceivers:

¶ Channels 50 and 51 typically do not interfere in STD mode at any distance.

¶ Channels 50 and 60 or higher typically do not interfere in all modes at any distance.

¶ Channels 50 and 51 may typically interfere in LP or XLP at 1 m distance.

¶ Channels 50 and 51 typically do not interfere in LP or XLP at 20 m distance.
But in all cases it is recommended to observe spacing as high as possible.

Remarks Channel 0 is reserved for DPA service purposes. It is not recommended to use it for regular
communication.

Side effects ï

See also setRFspeed

Example setRFchannel(25); // 868.15 MHz channel selected

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 43

 3.11.5 setRFmode

Function Set RF mode

Purpose Specify RFRX and RFTX power modes, signal filtering modes for RFRX and enable fast response to
external signal during LP/XLP RFRX.

Syntax void setRFmode(mode)

Parameters uns8 mode : SWTTFFRR in binary

S Ignored

W Wait packet end

 1 Waits until receipt is finished if data payload (but not the preamble) is currently receiving,
 even though toutRF timeout is over meanwhile.

 0 RFRXpacket is unconditionally finished when toutRF timeout is over.

TT TX mode

 00 for STD RX mode (standard preamble ~3 ms)
 01 for LP RX mode (prolonged preamble ~50 ms)
 10 for XLP RX mode (prolonged preamble ~900 ms)
 11 LP/XLP RX asynchronous termination on pin change enabled. If enabled and no packet
 is just received, low level on pin C5 (for non-SMT TR modules , e.g. TR-72D) or Q12
 (for TR-76D) terminates RF reception in LP/XLP mode, immediately or after current
 cycle finishing. See Examples 3 and 4.

FF Not used

RR RX mode

 00 STD RX mode (Standard, transmitting device should have TT=00)

 01 LP RX mode (Low power, transmitting device should have TT=01)

 10 XLP RX mode (Extra low power, transmitting device should have TT=10)

 11 Not used

Return value ï

Output values Available read only in the RFmodeByte register.

Preconditions ¶ Default value is mode = 0.

¶ Non-STD RX modes are intended for bit rate 19.386 kb/s only.

Remarks Tip: As the parameters, use constants (and their ored combinations), especially the predefined ones

in IQRF- macros.h header file instead of binary values. See Example E10-RFMODE and Example 1

below.

Side effects ¶ RF circuitry and MCU is temporarily set to sleep during low power RX modes. Thus, all tasks
running on OS background (e.g. SPI communication, LED indication etc.) can be untimely canceled.

To avoid this, use setRFmode after finishing all background tasks. See Example 2.

See also checkRF

Example 1 // RX: STD, no filtering, TX: for STD RX (standard preambles)

setRFmode(0b00000000); // Using numeral value

setRFmode(_RX_STD | _TX_STD) // The same using predefined constants for clarity

 // RX: LP, TX: for LP RX (prolonged preambles ~50 ms)

setRFmode(0b00010001); // Using numeral value

setRFmode(_RX_LP | _TX_LP) // The same using predefined constants for clarity

Example 2 while (getStatusSPI()) // Wait for finishing SPI on background

 clrwdt();

disableSPI();

SWDTEN = 0; // Possibly disable WDT for lower consumption

setRFmode(_RX_LP | _TX_LP); // and go to LP mode then

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 44

Example 3 // RFRXpacket terminated after low level on C5/Q12 is detected and

// current cycle is finished.

toutRF = 100; // [in cycles], 1 cycle == ~79 0 ms

while (1)

{

 setRFmode(_RX_XLP | _RLPMAT); // RX_XLP + LP/XLP RX termination

 if (RFRXpacket())

 {

 ...

 }

 é // Goes here after every 79 s (toutRF=100) or

 // if low level appears on the C5/Q12 pin

 // in a moment when RX XLP cycle is finished

 if (buttonPressed)

 {

 ...

 setRFmode(_RX_STD); // Set required TX preamble

 RFTXpacket();

 }

}

Example 4 // RFRXpacket terminated immediately after low level on C5/Q12 is detected.

// It is necessary to activate interrupt on change periodically.

toutRF = 100; // [in cycles], 1 cycle == ~79 0 ms

while (1)

{

 setRFmode(_RX_XLP | _RLPMAT); // RX_XLP + LP/XLP RX termination

 writeToRAM(&IOCBN, IOCBN | 0x10); // Negative edge active.

 // Instead o f IOCBN.4=1;

 // Bit IOCBN.4 cannot be accessed

 // directly due to OS restriction.

 IOCBP.4 = 1; // Positive edge active too

 IOCIE = 1; // Interrupt on change enabled

 writeToRAM(&IOCBF, IOCBF & 0xEF); // Clear interrupt on change fl ag.

 // Instead of IOCBF.4=0;

 // Bit IOCBF.4 cannot be accessed

 // directly due to OS restriction.

 if (RFRXpacket())

 {

 ...

 }

 é // Goes here after every 79 s (toutRF=100) or

 // immediately if low level appears on the C5/Q12 pin

 if (buttonPressed)

 {

 ...

 setRFmode(_RX_STD); // Set required TX preamble

 RFTXpacket();

 }

}

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 45

 3.11.6 checkRF

Function Check incoming RF signal strength for specified level.

Purpose Incoming RF signal detection (instead of dummy RFRXpacket).

Syntax bit checkRF(level)

Parameters uns8 level = RSSI_FILTER

RSSI_FILTER : 0 to 100. Values greater than 100 are truncated to 100.

RSSI level in dBm can be evaluated as RSSI = - 112 + RSSI_FILTER [dBm]

¶ RSSI_FILTER == 0 means signal level -112 dBm

¶ RSSI_FILTER == 5 means signal level -107 dBm

¶ é

¶ RSSI_FILTER == 100 means signal level -12 dBm

Higher level requires stronger signal. Relative RF range is shortened due to this filtration according the
datasheet of the TR module [4].

Return value ¶ 0: Signal with specified level or higher not detected
 RSSI < RSSI_FILTER

¶ 1: Signal with specified level or higher detected
 RSSI >= RSSI_FILTER

Output values After checkRF finishing, RF IC stays always in RF Ready mode.

Preconditions In LP and XLP RX modes, checkRF should be used only once whenever a change of filter level is

needed. It should not be used repeteadly in RX loop.

Remarks ¶ Higher level means lower sensitivity which requires stronger signal resulting in higher immunity
against interefrences but allows lower range ï see TR datasheet [4], table Relative RF range vs.
level.

¶ For environment without a significant noise checkRF(0) is recommended.

¶ Checking takes about 1 ms.

¶ checkRF performs the measurement only but does not store the result (lastRSSI is not updated).

For reading out the value the getRSSI function is intended. See getRSSI Example.

Side effects ï

See also RFRXpacket , getRSSI

Example 1 // Fast response receiving in STD mode

if (checkRF(5)) // Detect signal with RSSI >= - 107dBm

{

 if (RFRXpacket()) // Duration according to toutRF only if packet is s ent.

 { // toutRF can be optimized for expected packet length.

 ...

 }

} // Otherwise only ~1 ms is spent.

... time - critical section can be placed here

Example 2 if (checkRF(10)) // Detect signal with RSSI >= - 102dBm

 ...

Example 3 // RF signal strength analyzer

while (1)

 if (checkRF(5)) pulseLEDR(); // LED flash if RSSI >= - 107dBm detected

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 46

 3.11.7 getRSSI

Function Reads the RSSI_LEVEL register from RF IC. The current value is not measured but just read out the

last one.

Purpose Gets the RF signal level, especially for fast check without receiving.

Syntax uns8 getRSSI()

Parameters ï

Return value RSSI_LEVEL value at the time of the last checkRF (or RFRXpacket) call.

RSSI [dBm] = RSSI_LEVEL ï 130 . See the RF IC datasheet [5].

Output values Return value is also copied to the lastRSSI register.

Preconditions Return value is valid only if checkRF (or successful RFRXpacket) had been called before.

Remarks The lastRSSI register is updated also automatically:

¶ after RFRXpacket if returns true. Thus, it is not meaningful to call getRSSI after RFRXpacket .

¶ after getRSSI (valid after preceding checkRF call)

Side effects ï

See also checkRF , RFRXpacket

Example checkRF(0);

i = getRSSI(); // Get current RSSI level

 3.11.8 RFTXpacket

Function Send RF packet of specified length from bufferRF .

Purpose RF transmission

Syntax void RFTXpacket()

Parameters ï

Return value ï

Output values ï

Preconditions ¶ Peer-to-peer topology:

¶ PIN = 0 (Peer-to-peer)

¶ DLEN = packet length in bytes (0 to 64)

¶ Prepare data to send in bufferRF[0] to bufferRF[DLEN - 1] (if DLEN Í 0)

¶ Set RF output power via set RFpower

¶ IQMESH:

¶ PIN = 0x80 (IQMESH)

¶ Other network related parameters should also be specified
See IQRF OS User's guide [1].

Remarks ¶ Unlike SPI, RF communication does not run on OS background. This function is active on
foreground until the packet is sent.

¶ Duration depends on TR type, routing algorithm, packet length and timeslot.

¶ RFTXpacket is allowed to be called at least 5 ms after RFRXpacket . See Example 4.

¶ See Examples E01ïTX, E03ïTR, E09ïLINK and E11ïIQMESH-DFM-C [9].

Side effects ¶ bufferRF[DLEN] and bufferRF[DLEN+1] are destroyed

¶ System tick timing is slightly affected.

¶ The RF circuitry wakes up (in case of sleeping).

See also
RFRXpacket , setRFpower , setRFmode and (in case of IQMESH) also other RF functions

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 47

Example 1 // Peer - to - peer topology

PIN=0; // Peer - to - peer (update also after every RFRXpacket

 // before every RFTXpacket)

setNonetMode();

bufferRF[0] = "I"; // Data to send

bufferRF[1] = " Q";

DLEN = 2; // 2 B packet

RFTXpacket(); // Send the packet to all Peer - to - peer Nodes in range

 // and to all IQMESH Nodes having set filtering off

 // Program stays here until the packet is sent

 ... // and then continues

Example 2 // IQMESH without routing, packet from Coordinator to Node #10

PIN = 0; // PIN preclearing (update also after every RFRXpacket

 // before every RFTXpacket)

setCoordinatorMode(); // The NTWF flag (PIN.7) is set here.

bufferRF[0] = "I"; // Data t o send

bufferRF[1] = "Q";

DLEN = 2; // 2 B packet

RX = 10; // Packet for Node #10

// _ROUTEF = 0; // Routing disabled - not necessary (default by OS)

RFTXpacket(); // Send the packet to IQMESH Node #10 in this network

 // Reception depends o n the Node (its current network

 // or filtering)

Example 3 // IQMESH with routing

 // Packet from Coordinator to Node #10

PIN = 0; // PIN preclearing (update also after every RFRXpacket

 // before every RFTXpacket)

setCoordinatorMode(); // The NTWF flag (PIN.7) is set here.

bufferRF[0] = "I"; // Data to send

bufferRF[1] = "Q";

DLEN = 5; // 5 B packet

RX = 10; // Packet for Node #10

_ROUTEF = 1; // Routing enabled for outgoing packets

RTDEF = 1; // SFM (Static Full MESH)

// R TDEF = 2; // DFM (Discovered Full MESH)

RTHOPS = 10; // 10 hops

// RTHOPS = eeReadByte[0]; // # hops = # bonded nodes

RTTSLOT = 2; // Time slot = 2 ticks (20 ms is enough for DLEN=5)

RFTXpacket(); // Send the packet to IQMESH Node #10 in this network

 // Reception depends on the Node (its current network

 // or filtering)

Example 4 if (RFRXpacket()) ;

{

 ... // If there is no other code taking at least 5 ms,

 waitMS(5); // the delay must be inluded here

 RFTXpacket()

 ...

}

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 48

 3.11.9 RFRXpacket

Function Receive RF packet to bufferRF and provide related information

Purpose RF receiving

Syntax bit RFRXpacket()

Parameters ï

Return value ¶ 1 ï packet received

¶ 0 ï packet not received

Output values ¶ lastRSSI ï the RSSI value after successful receipt. RSSI [dBm] = lastRSSI ï 130 .

¶ DLEN = packet length. This variable is destroyed if the receipt is not successful.

¶ PIN is updated according to packet received. This variable is destroyed if the receipt is not

successful.

¶ _NTWPACKET: valid if RFRXpacket return value == 1 only:

¶ 1 ï networking packet received

¶ 0 ï non-networking packet received

¶ Other related networking information in case of IQMESH.

Preconditions ¶ Timeout should be specified in toutRF (1 to 255) in number of 10 ms ticks or for LP and XLP modes
in cycles, see IQRF OS User's guide [1], RF RX and TX modes).

¶ Peer-to-peer topology: nothing else

¶ IQMESH: network related parameters (filtering, ...) should be predefined
See IQRF OS User's guide [1].

Remarks ¶ Unlike SPI, RF communication does not run on OS background. This function is active on
foreground until the packet is received or timeout expired. Timeout during packet receiving

terminates the reception except of the Wait packet end mode ï see setRFmode .

¶ If the packet is sent when the addresse (or a routing device) is not executing this function the packet
is lost.

¶ Peer-to-peer topology: All non-networking packets in range are received.

¶ IQMESH: Device receives only packets intended for it and non-networking packets depending on

filtering mode ï see setNetworkFilteringOn and setNetworkFilteringOff .

¶ RFRXpacket is abandoned cca 105 ms (in LP mode) or cca 1005 ms (in XLP mode) after the

packet transmission start.

¶ In LP and XLP modes both LEDs are switched off.

¶ After termination in LP mode, RF IC is switched to RF ready mode.

¶ After termination in XLP mode, RF IC is switched to RF sleep mode.

¶ See Examples E02ïRX, E03ïTR, E09ïLINK, E11-IQMESH-DFM-N and E14-CONSUMPTION [9].

Side effects ¶ Update PIN before every RFTXpacket followed after RFRXpacket .

¶ Result of captureTicks is destroyed if startCapture is active on background at the same time.

¶ System tick timing is slightly affected.

¶ bufferRF[DLEN] and bufferRF[DLEN+1] is destroyed.

¶ The RF circuitry wakes up (in case of sleeping).

¶ If a packet received the A/D converter control registers are changed.

See also RFTXpacket , setRFmode , checkRF and (in case of IQMESH) also other RF functions

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 49

Example 1 // Peer - to - peer topology

toutRF = 10; // RF timeout 100 ms

if (RFRXpacket()) // Try to receive RF packet.

 // Program stays here until the packet is received

 // or the timeout is expired. Packet received?

{ // Yes:

 copyBufferRF2INFO(); // Store received data

 PacketLength = DLEN; // and possibly other info (packet length, ...)

}

else

{ // No:

 ... // Timeout expired. Arrange respective operations.

}

Example 2 IQMESH: See setNodeMode and setNetworkFilteringOn.

Example 3 if (RFRXpacket())

{

 if (_ROUTEF) // Was the packet routed?

 { // Yes - wait for finish of routing

 waitNewTick();

 while (RTHOPS) // RTHOPS - rest of hops

 {

 waitDelay(RTTSLOT); // RTTSLOT - timeslot

 RTHOPS-- ; // Do not answer until all hops are finished

 }

 }

 ... // Now the Node is allowed to answer

}

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 50

 3.12 Networking

 3.12.1 setCoordinatorMode

Function Set Coordinator mode

Purpose Assign the TR module as a network Coordinator

Syntax void setCoordinatorMode()

Parameters ï

Return value ï

Output values ¶ Flag _networkingMode (userInterface.7) = 1

¶ Flag _networkTwo (userInterface.6) = 0

¶ In Coordinator mode the _NTWF flag (PIN.7) is automatically set before calling RFTXpacket

Preconditions For IQMESH only

Remarks Every TR module can work as a Coordinator or a Node. Just one Coordinator in single network is
allowed. Avoid dynamic switching the Coordinator from device to device in a network.

This settings affects both RFRXpacket and RFTXpacket .

Side effects ï

See also setNodeMode , setNonetMode , RFTXpacket

Example

 3.12.2 setNodeMode

Function Set Node mode

Purpose Assign the TR module as a network Node

Syntax void setNodeMode()

Parameters ï

Return value ï

Output values ¶ Flag _networkingMode (userInterface.7) = 1

¶ Flag _networkTwo (userInterface.6) = 1

¶ In Node mode the _NTWF flag (PIN.7) is automatically set before calling RFTXpacket

Preconditions For IQMESH only

Remarks Every TR module can work as a Coordinator or a Node. This settings affects both RFRXpacket and

RFTXpacket .

Side effects ï

See also setCoordinatorMode , setNonetMode , RFTXpacket

Example

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 51

 3.12.3 setNonetMode

Function Select Peer-to-peer mode

Purpose Switch from IQMESH to Peer-to-peer

Syntax void setNonetMode()

Parameters ï

Return value ï

Output values Flag _networkingMode (userInterface.7) = 0

Preconditions ï

Remarks ¶ Default OS mode is Peer-to-peer.

¶ This settings affects RFRXpacket and RFTXpacket features.

¶ PIN is not affected immediately but it is cleared after subsequent RFRXpacket or RFTXpacket .

¶ Flag _networkTwo (userInterface.6) is not changed.

Side effects ï

See also setCoordinatorMode , setNodeMode

Example setNetworkOne(); // TR c ommunicates in IQMESH networking mode here

 ...

setNonetMode(); // Switch to Peer - to - peer mode

 ... // Now TR communicates without networking support

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 52

 3.12.4 setNetworkFilteringOn

Function Start filtering incoming non-networking packets and packets coming from non-current network.

Purpose To receive packets from current network only.

Syntax void setNetworkFilteringOn()

Parameters ï

Return value ï

Output values ¶ Flag _filterCurrentNetwork in register userInterface:

 _filterCurrentNetwork : 0 ï filtering off

 1 ï filtering on

¶ This affects the RFRXpacket return value.

Preconditions For IQMESH only. Default OS condition is Filtering Off.

Remarks ï

Side effects ï

See also setNetworkFilteringOff , RFRXpacket

Example setNetworkFilteringOn(); // Start filtering incoming packets

RFRXpacket(); // Return value == 1 if the packet came

 // from current network only.

 // Return value == 0 if

 // the packet came from non - current network(s)

 // or it is a non - networking packet

 // or no packet came in time at all.

 3.12.5 setNetworkFilteringOff

Function Stop filtering incoming packets from the point of view the packet is coming from.

Purpose To receive all packets (non-networking packets as well as packets from all network).

Syntax void setNetworkFilteringOff()

Parameters ï

Return value ï

Output values ¶ Flag _filterCurrentNetwork in register userInterface:

 _filterCurrentNetwork : 0 ï filtering off

 1 ï filtering on

¶ This affects the RFRXpacket return value.

Preconditions For IQMESH only. Default OS condition is Filtering Off.

Remarks Network 1 or 2 is automatically selected according to last received packet in this mode (except of non-
networking packets).

Side effects ï

See also setNetworkFilteringOn , RFRXpacket

Example setNetworkFilteringOff(); // Stop filtering incoming packets

RFRXpacket(); // Return value == 1 if

 // the packet came from current network

 // or from non - current network(s)

 // or it is a non - networking packet

 // Return value == 0 if

 // no packet came in time at all

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 53

 3.12.6 setUserAddress

Function Assign a user address to a Node

Purpose User addressing of Nodes

Syntax void setUserAddress(address)

Parameters uns16 address : user address 1 to 65 000

Return value ï

Output values ï

Preconditions For IQMESH Node and DFM2B only.

Remarks ¶ 0xFFFF is intended for broadcast.

¶ Groups can be created by assigning the same address to more Nodes.

¶ See Routing algorithms in the IQRF OS user's guide for details.

¶ It is often convenient to set this as a part of bonding procedure by the user (to keep user program
the same for all Nodes etc.).

¶ Node User address is stored in EEPROM and is accessible via getNetworkParams .

 See Example 4.

Side effects ï

See also bondNewNode

Example 1 setUserAddress(2000); // The Node has got user address 2000

Example 2 setUserAddress(UA);

eeWriteByte(EEUA, UA) // User address stored to EEPROM

 ...

reset(); // User address lost after reset

setUserAddress(eeReadByte(EEUA)); // User address restored from EEPROM

Example 3 getNetworkParams(); // Get User address

uns16 myAddress = ntwUSERADDRESS; // See IQRF - memory.h

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 54

 3.12.7 getNetworkParams

Function Get network parameters

Purpose Get some information about curent system, RF and network parameters

Syntax uns8 getNetworkParams()

Parameters ï

Return value ï

Output values ¶ param2 : Address of the device in network

¶ 0 ï Illegal value (resulting probably due to forbidden getNetworkParams usage at unbonded

device)

¶ 1 ï 239 Bonded Node (logical address)

¶ 254 (0xFE) Universal address (e.g. prebonded Node)

¶ bit _NTWPACKET

¶ 1 ï IQMESH packet

¶ 0 ï Peer-to-peer packet

¶ param3 : Network identification (param3.high=NID1 , param3.low=NID0).

 If the device is bonded NID0 and NID1 refer to Coordinator otherwise to the device itself. These

features are not guaranteed for future OS versions.

¶ Network parameters (registers with names beginning with the ntw prefix) are updated. See IQRF
OS User's guide [1], Appendix 2, table OS, RF and network parameters.

Preconditions ¶ For IQMESH only.

¶ For bonded devices only, see Example.

Remarks See Example E11 - IQMESH-DFM-N [9].

Side effects ï

See also amIBonded , removeBondAddress

Example if (amIBonded()) // Is the Node bonded?

{ // Yes:

 getNetworkParams(); // Get Node number

 myAddr = param2;

}

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 55

 3.12.8 sendFRC

Function Fast Response Command (FRC) by the Coordinator and receiving of fast answer from all Nodes

Purpose Send a requesting command and receive fast answer with data collection from more Nodes

Syntax uns8 sendFRC(command)

Parameters uns8 command : User command. It is copied to MPRW1 on Node side.

¶ command.7 Format of collected data

¶ 0 Bit pairs collected. 2 bits from up to 239 Nodes (with logical addresses 1-239)

¶ 1 Bytes collected:
Å 1B mode: 1 byte from up to 62 Nodes:
Å For not selective FRC: from nodes with logical addresses 1-62
Å For selective FRC: from up to 62 nodes selected from 239 Nodes
Å 2B mode: 2 bytes from up to 30 Nodes:
Å For not selective FRC: from nodes with logical addresses 1-30
Å For selective FRC: from up to 30 nodes selected from 239 Nodes

¶ command.0 to .6 User-specific (possibly closer specifying the FRC command)

Return value ¶ 0x00 ï 0xEF FRC successful. Number of Nodes participating in FRC (adding values to FRC

 response). For bit pairs collected only. Just non-zero bit pairs are counted.

¶ 0xF0 ï 0xFC Reserved

¶ 0xFDFRC unsuccessful. Immediate return: max. number of selected Nodes (specified in bit array)

allowed for selective FRC exceeded (>62 b for 1B FRC or >30 b for 2B FRC).

¶ 0xFEFRC unsuccessful. Immediate return in case of EEPROM non-consistency (e.g. not

 initialized EEPROM by clearAllBonds before new bonding). For bit pairs collected only.

¶ 0xFFFRC unsuccessful, no Nodes are bonded

Output values ¶ Collected data is stored in bufferINFO (if properly answered by the Nodes)

¶ When bits pairs are collected, the 1st bits from the Nodes are stored in the bytes indexed 0-29 of

the bufferINFO , 2nd bits from the Nodes are stored in the bytes indexed 32-61.

 Bit.0 in bufferINFO[0] and bufferINFO[32] is not used.

 bufferINFO [0] bufferINFO[1] ...

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 1st bit of: N7 N6 N5 N4 N3 N2 N1 - N15 N14 N13 N12 N11 N10 N9 N8

 ... bufferINFO [32] bufferINFO[33] ...

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 2nd bit of: N7 N6 N5 N4 N3 N2 N1 - N15 N14 N13 N12 N11 N10 N9 N8
 For selective FRC, only values corresponding to selected Nodes are valid.

¶ In 1B mode, collected data is stored at bytes 1-62 of the buff erINFO . bufferINFO[0] is not

 used.

 bufferINFO [0] [1] [2] [3] [4] é

 - N1 N2 N3 N4 ... For non-selective FRC.
 - S1 S2 S3 S4 ... For selective FRC. S1 é S62 mean up to 62 selected
 Nodes (selected from N1 to N239 by the bit array, see Preconditions).

¶ In 2B mode, collected data (little endian) is stored at bytes 2-61 of the bufferINFO. bufferINFO[0]
and [1] are not used.

 bufferINFO [0] [1] [2] [3] [4] [5] é

 - - N1 N2 é For non-selective FRC.
 - - S1 S2 é For selective FRC. S1 é S30 mean up to 30 selected
 Nodes (selected from N1 to N239 by the bit array, see Preconditions).

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 56

Preconditions ¶ The 2 B in Standard FRC or 30 B in Advanced FRC array DataInSendFRC of the Coordinator

should be specified. This array will be copied to the DataOutBeforeResponseFRC array of all

Nodes which received FRC.

¶ bufferINF0[0 - 29] : For selective FRC only. The bit array specifying (by log. 1) selected Nodes in

following order:

 bufferINFO[0].0 ï unused, bufferINFO[0].1 ï N1, é, bufferINFO[0].7 ï N7,

 bufferINFO[1].0 ï N8, bufferINFO[1].1 ï N9, é, bufferINFO[29].7 ï N239

 Only bonded Nodes are allowed to be selected.

¶ For IQMESH Coordinator only. (setCoordinatorMode is automatically called first).

¶ FRC modes must always be selected:

¶ By bit _advancedFRCmode :

 Å 0: Standard FRC mode
 Å 1: Advanced FRC mode

¶ By bit _selectiveFRCmode :

 Å 0: Non-selective FRC
 Å 1: Selective FRC

¶ By bit _twoByteFRCmode :

 Å 0: 2 b or 1 B response is requested. See Parameters.
 Å 1: 2 B response is requested. See Parameters.
 These selection bits are undefined after reset and always left completely under user control (not
 affected by OS).

¶ The time needed to complete FRC responses in Nodes must be specified by the Coordinator by

macro setResponseFRCtime . It is the maximal time between finished routing and responseFRC

calls, the same for all responsing Nodes. It is selectable from 8 possible values (from 40 ms to

20.48 s) and passed to responsing Nodes within the sendFRC command. See responseFRC ,

Example 1. Header file IQRF-macros.h defines all the 8 possible periods by constants

_RESPONSE_FRC_TIME_xxx_MS. The time required to complete the FRC answers depends on the

application and must be selected according to the Node needed the longest time to acquire
response data. For example, if the Node needs up to 400 ms to complete data from a sensor, the

nearests higher time _RESPONSE_FRC_TIME_640_MS should be used.

¶ FRC works for 1 B addressing (with addresses from 1 up to 239) only.

¶ clearBufferINFO and PIN = 0 must be performed first. See Examples.

Remarks ¶ See Example E11-IQMESH-DFM-C [9] and IQRF OS User's guide [1], chapter Fast Response
Command.

¶ Data can be collected also from not discovered Nodes.

¶ This is a blocking function (application program is staying here until the collection is completed).

This time depends on number of bonded and discovered Nodes. Typical time for sendFRC is lower

than:

¶ Standard FRC:

 BONDED_NODES * 130 + _RESPONSE_FRC_TIME_xxx_MS + 250 [ms]

¶ Advanced FRC and STD mode:

 BONDED_NODES * 150 + _RESPONSE_FRC_TIME_xxx_MS + 290 [ms]

¶ Advanced FRC and LP mode:

 BONDED_NODES * 200 + _RESPONSE_FRC_TIME_xxx_MS + 390 [ms]

¶ Standard FRC works in RF STD mode only. Advanced FRC works in RF STD or LP modes only.

Side effects ¶ OS buffers (bufferINFO , bufferRF and bufferAUX) are modified

¶ All OS registers regarding RF communication ï relating to network parameters sent in the packet,

e.g. RX and RTDT0 ï RTDT3 (RTHOPS, RTTSLOT, é) may be changed.

¶ A/D converter control registers are changed

See also responseFRC , amIRecipientOfFRC

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 57

Example 1 // Standard, Non - selective, 2 bits collecting, STD RF mode

PIN = 0;

clearBufferINFO();

_advancedFRCmode = 0; // Standard FRC

_selectiveFRCmode = 0; // Non - selective FRC

_twoByteFRCmode = 0; // Non - Two byte FRC

setResponseFRCtime(_RESPONSE_FRC_TIME_40_MS); // responseFRC must be called

 // up to 40 ms after sendFRC routing finishing

DataInSendFRC[0] = user_value0; // 2 B data to be delivered to all Nodes

DataInSendFRC[1] = user_value1;

stopSPI();

_LEDG = 1; // FRC duration indication

SendFRC(myCommand & 0x7F); // Bit 7 must be cleared to collect bits

_LEDG = 0;

copyBufferINFO2COM();

startSPI(sizeof(bufferCOM));

Example 2 // Advanced, Non - selective, 1 byte collecting, LP RF mode

PIN = 0;

clearBufferINFO();

_advancedFRCmode = 1; // Advanced FRC

_selectiveFRCmode = 0; // Non - selective FRC

_twoByteFRCmode = 0; // Non - Two byte FRC

setRespo nseFRCtime(_FRC_RESPONSE_TIME_360_MS); // responseFRC must be called

 // up to 360 ms after sendFRC routing finishing

setRFmode(_TX_LP); // Can work also in LP TX mode

DataInSendFRC[0] = user_value0; // 30 B data to be delivered to all Nodes

 ...

DataInSendFRC[29] = user_value29;

stopSPI();

_LEDG = 1 ; // FRC duration indication

SendFRC(myCommand | 0x80); // Bit 7 must be set to 1 to collect bytes

_LEDG = 0;

copyBufferINFO2COM();

startSPI(sizeof(bufferCOM));

Example 3 // Advanced, Selective, 2 bits collecting, LP RF mode

PIN = 0;

clearBufferINFO();

_advancedFRCmode = 1; // Advanced FRC

_selectiveFRCmode = 1; // Selective FRC

_twoByteFRCmode = 0; // Non - Two byte FRC

setRespon seFRCtime(_FRC_RESPONSE_TIME_680_MS); // responseFRC must be called

 //up to 680 ms after sendFRC ro uting finishing

bufferINFO[0] = 0x0A; // Set bit field of selected Nodes in bufferINFO

// bufferINFO[1] = xx; // N1 and N3 are selected in this case

// ...

setRFmode(_TX_LP); // Can work also in LP TX mode

DataInSendFRC[0] = user_value0; // 30 B da ta to be delivered to all Nodes

 ...

DataInSendFRC[29] = user_value29;

stopSPI();

_LEDG = 1; // FRC duration indication

SendFRC(myCommand & 0x7F); // Bit 7 must be cleared to collect bits

_LEDG = 0;

copyBufferINFO2COM();

startSPI(sizeof(bufferCO M));

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 58

Example 4 // Advanced, Selective, 2 bytes collecting, LP RF mode

PIN = 0;

clearBufferINFO();

_advancedFRCmode = 1; // Advanced FRC

_selectiveFRCmode = 1; // Selective FRC

_twoByteFRCmode = 1; // Two byte FRC

setRespo nseFRCtime(_FRC_RESPONSE_TIME_680_MS); // responseFRC must be called

 // up to 680 ms after sendFRC routing finishing

bufferINFO[0] = 0x0A; // Set bit field of selected Nodes in bufferINFO

// bufferINFO[1] = xx; // N1 and N3 are selected in this case

// ...

setRFmode(_TX_LP); // Can work also in LP TX mode

DataInSendFRC[0] = user_value0; // 30 B data to be delivered to all Nodes

 ...

DataInSendFRC[29] = user_value29;

stopSPI();

_LEDG = 1; // FRC duration indication

SendFRC(myCommand | 0x80); // Bit 7 must be 1 to collect bytes

_LEDG = 0;

copyBufferINFO2COM();

startSPI(sizeof(bufferCOM));

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 59

 3.12.9 responseFRC

Function Response to FRC command received by a Node

Purpose Fast sending of collected data from more Nodes to the Coordinator

Syntax void responseFRC()

Parameters ï

Return value ï

Output values Requested data is delivered to the Coordinator

Preconditions ¶ FRC packet received is indicated by the _wasFRC flag.

¶ As a result of preceding FRC command received, the following variables are set:

¶ MPRW0 contains the __FRCOMMAND (standard FRC) or __FRCOMMANDADV (advanced FRC)

constant value.

¶ MPRW1 contains a user command sent from the Coordinator as the parameter of function sendFRC

 Bit.7 in register MPRW1 specifies the format (the range and the type) of the response data to be

 collected:

 Å 0 2 bits (responseFRCvalue.0 and .1) ï from all Nodes with logical addresses 1-239

 Å 1 Bytes:

 Flag _twoByteFRC 0:

 1 byte (responseFRCvalue) ï from up to 62 selected Nodes:
 Å For non-selective FRC: from Nodes with addresses 1-62
 Å For selective FRC: from up to 62 selected Nodes (selected from N1ïN239 in bit array)

 Flag _twoByteFRC 1:

 2 bytes (responseFRCvalue2B) ï from up to 30 selected Nodes:

 Å For non-selective FRC: from Nodes with addresses 1-30
 Å For selective FRC: from up to 30 selected Nodes (selected from N1ïN239 in bit array)

¶ param4 contains the time (in ticks) specified on the Coordinator side by macro

setResponseFRCtime . See below.

¶ Before responseFRC calling, it is necessary to wait until routing of the FRC packet from the

Coordinator is finished. See the Example below.

¶ Maximal time between finished routing and responseFRC calling (i.e. the time for handling the data
for FRC answer) must be the same for all Nodes and is specified by the Coordinator (by macro

setResponseFRCtime). See sendFRC Examples. This time is propagated throughout the network

and placed to registers param4 in Nodes. This is intended to generate proper delay ensuring

correct timing of FRC respones by startLongDelay . See Example.

¶ Before responseFRC calling, the response value(s) (data to collect) must be placed in the

responseFRCvalue register or (for Two byte mode) in the responseFRCvalue2B variable. It is

recommended to respond by non-zero values only and dedicate zero value to distinguish (by the
Coordinator) the case that the response from the Node failed. (But also any other rule can be
defined by the user for it instead.)

¶ For IQMESH Node only.

¶ For 1 B addressing (for Nodes with addresses from 1 up to 239) only.

¶ It is not intended for prebonded (not authorized) Nodes. Such Nodes are ignored by responseFRC .

¶ Standard FRC works in RF STD mode only. Advanced FRC works in RF STD or LP modes.

Remarks ¶ See Example E11-IQMESH-DFM-N [9] and IQRF OS User's guide [1], chapter Fast Response
Command.

¶ This is a blocking function (application program is staying here until the collection is completed).
The time depends on:

¶ Number of Nodes in the network

¶ Whether the Node is discovered or not

¶ Logical address or VRN

Side effects ¶ OS buffers bufferINFO , and bufferRF are modified

¶ All OS registers regarding RF communication ï relating to network parameters sent in the packet,

e.g. RX and RTDT0 ï RTDT3 (RTHOPS, RTTSLOT, é) may be changed.

¶ A/D converter control registers are changed

See also sendFRC, amIRecipientOfFRC

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 60

Example // Response to standard or advanced FRC, either selective or non - selective

if (RFRXpacket())

{

 if (_ROUTEF) // Has the packet been routed?

 { // Yes - wait until routing is finished

 waitNewTick();

 while (RTHOPS) // Rest of hops

 {

 waitDelay(RTTSLOT);

 RTHOPS-- ;

 }

 }

 // FRC command handling

 if (_wasFRC)

 { // FRC packet detected. Register param4 contains

 // the time needed for FRC handlig set by

 // setResponseFRCtime macro on the Coordinator side.

 startLongDelay(param4);

 bit FRChandled = FALSE;

 do

 { // If the Node is a recepient of FRC, handle it only once.

 if (amIRecipientOfFRC() && (FRChandled == FALSE))

 {

 FRChandled = TRUE;

 if (MPRW0 == __FRCOMMAND)

 {

 uns16 user_value = DataOutBeforeResponseFRC;

 // A value received from the Coordinator

 } // (from register DataInSendFRC)

 else

 {

 uns8 user_buf[30];

 user_buf[0] = DataOutBeforeR esponseFRC[0]; // Values received

 ... // from Coordinator (from array DataInSendFRC)

 user_buf[29] = DataOutBeforeResponseFRC[29];

 }

 ... // Do something according to MPRW1 command (and possibly

 // according to DataOutBeforeResponseFRC), e.g. myResponse=é;

 // Shaded part must take up to the time specified in param4

 if (MPRW1.7)

 {

 if (_twoByteFRC == 1)

 { // 2 b yte value

 responseFRCvalue2B.high8 = myResponse_HB;

 responseFRCvalue2B.low8 = myResponse_LB;

 }

 else

 responseFRCvalue = myResponse; // 1 byte value

 }

 else

 responseFRCvalue = myResponse & 0x03; // 2 bit value

 }

 } while (isDelay()); // Wait for rest of the time set by

 // setResponseFRCtime macro on the Coordinator side

 responseFRC(); // Blocking time - see Remarks

 }

 else // Non FRC command handling

 {

 ...

 }

}

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 61

 3.12.10 amIRecipientOfFRC

Function Evaluate whether the FRC conmmand is intended for given Node

Purpose Enable FRC response for requested Nodes only

Syntax bit amIRecipientfOfFRC()

Parameters ï

Return value ¶ 0 FRC is not intended for given Node

¶ 1 FRC is intended for given Node (also for non-selective FRC)

Output values ï

Preconditions For IQMESH Nodes only.

Remarks ¶ amIRecipientOfFRC must be called after FRC command receipt but before bufferRF is affected

later on either by OS or by the user. E.g., it must be called before responseFRC .

¶ See Example E11 - IQMESH-DFM-N [9].

Side effects ï

See also responseFRC

Example See responseFRC Example.

 IQRF OS

É 2017 MICRORISC s.r.o. www.iqrf.org Ref_Guide_IQRF-OS-309D_TR-7xD_170502 Page 62

 3.13 Routing

 3.13.1 setRoutingOn

Function Routing enabled

Purpose Allow the Node to route packets on background.

Syntax void setRoutingOn()

Parameters ï

Return value ï

Output values ¶ Enables to assign a VRN (Virtual Routing Number) to the Node during Discovery

¶ Flag _disableRouting = 0

¶ This state is stored in EEPROM and initialized after reset.

Preconditions ¶ For IQMESH Nodes only

¶ For DFM routing algorithms only

Remarks ¶ Routing must be enabled for a Node to be assigned to the routing backbone during Discovery.

¶ For DFM topologies, discovery must be called after every setRoutingOn otherwise the Node

will not work as a router.

¶ Routing can be enabled in STD and LP receive modes only. Routing in XLP mode is not supported
for TR-7xD transceivers.

¶ Flag _disableRouting in register _ntwCFG is available read only after calling

getNetworkParams :

 _disabledRouting : 0 ï Routing on

 1 ï Routing off

Side effects ï

See also setRoutingOff , discovery , isDiscoveredNode , wasRouted

Example ï

 3.13.2 setRoutingOff

Function Routing disabled

Purpose Forbid the Node to route packets on background.

Syntax void setRoutingOff()

Parameters ï

Return value ï

Output values ¶ Disables to assign a VRN (Virtual Routing Number) to the Node during Discovery

¶ Flag _disableRouting = 1

¶ This state is stored in EEPROM and initialized after reset.

Preconditions ¶ For IQMESH Nodes only

¶ For DFM routing algorithms only

Remarks ¶ If routing is disabled the Node will not be assigned to the routing backbone during Discovery.

¶ For DFM topologies, to fix the discontinuity in the network, discovery must be called after every

setRoutingOff applied on an already discovered Node.

¶ Flag _disableRouting in register _ntwCFG is available read only after calling

getNetworkParams :

 _disabledRouting : 0 ï Routing on

 1 ï Routing off

Side effects ï

See also setRoutingOn , discovery , isDiscoveredNode , wasRouted

Example ï

