
IQRF OS
Operating System

Version 3.01D

for TR-52D and TR-54D

Reference Guide

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 1

IQRF OS
Quick reference

Values between system functions and superordinate program are passed on via parameters. OS uses 3 parameters in
total: param2 (1 B), param3 (2 B) and param4 (2 B). Their location in memory see the RAM map [2]. Individual functions
have up to 3 parameters. Several functions use some of these params and W (PIC accumulator) to return output values.
Note that they are valid until another function using the same parameter or the debug function is called by the user.
Additionally, some functions use some params as work variables that is why their previous content can be destroyed.
Five stack levels are available to call all OS functions in subroutines.

Functions

Control 4
calibrateTimer() Calibrate tick generator 4
iqrfSleep() Set the TR module in power saving mode (Sleep) 5
setRFsleep() Set the RF IC in power saving mode (Sleep) 6
setRFready() Set the RF IC in ready mode (wake-up from Sleep) 6
debug() Enter the debug mode 7
uns8 getSupplyVoltage() Get voltage level for battery check 8
getTemperature() Temperature measurement 9

Active waiting 10
waitMS(ms) Active waiting (time in ms) 10
waitDelay(ticks) Active waiting (time in ticks) 10
waitNewTickDelay() Wait for a new tick 11

Timing on background 11
startDelay(ticks) Start waiting (time in ticks) 13
startLongDelay(ticks) Start long waiting (time in ticks) 13
bit isDelay() Still waiting 14
startCapture() Resets counter of ticks 11
captureTicks() Get number of ticks counted 12

LED indication 15
setOnPulsingLED(ticks) LEDR and LEDG On times setting (for blinking) 15
setOffPulsingLED(ticks) LEDR and LEDG Off times setting (for blinking) 15
pulsingLEDR() Red LED activation (blinking on background) 16
pulseLEDR() Single red LED pulse (one flash on background) 16
stopLEDR() Red LED off, blinking stopped 17
pulsingLEDG() Green LED activation (blinking on background) 17
pulseLEDG() Single green LED pulse (one flash on background) 18
stopLEDG() Green LED off, blinking stopped 18

MCU EEPROM 19
uns8 eeReadByte(addr) Read one byte 19
eeReadData(addr,length) Read a block 19
eeWriteByte(addr, data) Write one byte 20
eeWriteData(addr, length) Write a block 20

Serial EEPROM 21
eeeReadData(addr) Read a 16 B block from serial EEPROM to bufferINFO 21
eeeWriteData(addr) Write a 16 B block from bufferINFO to EEPROM 21

RAM 22
uns8 readFromRAM(addr) Read one byte 22
writeToRAM(addr,data) Write one byte 23

Buffers 24
clearBufferINFO() bufferINFO clearing 28
clearBufferRF() bufferRF clearing 28
copyBufferINFO2COM() Copy bufferINFO to bufferCOM 24
copyBufferINFO2RF() Copy bufferINFO to bufferRF 24
copyBufferRF2COM() Copy bufferRF to bufferCOM 25
copyBufferRF2INFO() Copy bufferRF to bufferINFO 25
copyBufferCOM2RF() Copy bufferCOM to bufferRF 26
copyBufferCOM2INFO() Copy bufferCOM to bufferINFO 26
bit compareBufferINFO2RF(length) Comparison of bufferINFO and bufferRF 27
void swapBufferINFO() Swap bufferINFO and bufferAUX 27

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 2

IQRF OS
Data blocks 29

copyMemoryBlock
(uns16 from, uns16 to, uns8 length) Copy any data block to any position 29
moduleInfo() Get info about transceiver module and OS 30
appInfo() Copy info about application from EEPROM to bufferINFO 31

SPI 32
enableSPI() SPI communication line activation 32
disableSPI() SPI communication line deactivation 32
startSPI(length) SPI packet transmission 33
stopSPI() SPI stopping 34
restartSPI() SPI continuing 34
bit getStatusSPI() SPI status, update SPI flags 35

RF 36
setTXpower(level) RF power setting (7 levels) 36
setRFspeed(speed) Select RF bit rate 36
setRFband(band) Select RF band (868 MHz or 916 MHz) 37
setRFchannel(channel) Select RF channel 37
setRFmode(mode) Select RF power management mode 38
checkRF(level) Detect incoming RF signal 39
RFTXpacket() Send a packet from bufferRF via RF 42
bit RFRXpacket() Receive a packet via RF to bufferRF 42

Networking 44
setCoordinatorMode() Device is the Coordinator 44
setNodeMode() Device is a Node 44
setNonetMode() Networking disabled 45
setNetworkFilteringOn() Packets accepted from current network only 46
setNetworkFilteringOff() Packets accepted from both networks 46
setUserAddress(uns16: address) Assign a user address to a Node 47
uns8 getNetworkParams() Get information about the network 48

Routing 49
setRoutingOn() Outgoing packets routed via other devices on background 49
setRoutingOff() No routing for outgoing packets 49
uns8 discovery(zones) Discover Nodes for routing 50
answerSystemPacket() Enable response to Coordinator for Discovery 51
bit isDiscoveredNode(N) Check for being discovered 52
bit wasRouted() Indicate incoming packet routing 52
optimizeHops(x) Optimize number of hops for given Node 53

Bonding - Node 54
bit bondRequest() Request for bonding 54
bit amIBonded() Is the Node bonded? 55
removeBond() Unbonding 55

Bonding - Coordinator 56
bit bondNewNode(address) Bonding a Node 56
bit isBondedNode(N) Is the Node bonded? 57
removeBondedNode(N) Unbonding a Node 57
bit rebondNode(N) Rebonding a Node 58
clearAllBonds() Clearing of all bonds 58

RFPGM 59
enableRFPGM() Set to switch to RFPGM mode after reset 59
disableRFPGM() Set not to switch to RFPGM mode after reset 59
runRFPGM() Switch to RFPGM mode 60
setupRFPGM(x) Setup RFPGM parameters 61

Unless otherwise stated, all functions are the void type and all their parameters are the uns8 type.

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 3

IQRF OS
OS functions

Control

calibrateTimer

Function Calibrate tick generator

Purpose –

Syntax void calibrateTimer()
Parameters –

Return value –

Output values –

Preconditions Do not use this function. It is not necessary to calibrate IQMESH timing from OS v3.01D.

Remarks –

Side effects –

See also –

Example –

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 4

IQRF OS
iqrfSleep

Function Setting the TR module in power saving mode (Sleep)

Purpose Easy and efficient power management. This function, once called, puts the module into the Sleep mode.
Wake-up can be caused by power off/on, watchdog timeout or on the C5 (for TR modules in SIM format,
e.g. TR-52D) or Q12 (for TR-54D) pin change.

Syntax void iqrfSleep()
Parameters –

Return value –

Output values –

Preconditions • This functions operates like the PIC machine instruction Sleep. Additionally, OS suspends all HW
resources that are under its control (RF circuitry, timers, internal PIC pins, LEDs etc.). The user should
do the same for resources used by the application before entering the Sleep mode to achieve minimal
power consumption.

• For wake-up on pin change the required sequence shoud be executed. Wake-up on pin change is
default disabled.

• This function is not time-efficient for subsequent short sleep periods, especially if RF IC is off. For
faster operation in such cases use sleep() instead but you should ensure minimal consumption by
user program. See Example 3.

Remarks All features are under user's control. RBIF flag is not cleared to allow to distinguish wake-up type. See
example E01-TX [10].

Side effects Global interrupt enable (GIE) is controlled by OS again after wake-up.

See also setRFsleep
Example 1 // Minimize consumption (depends on resources used by the user)

Motor = 0; // Stop the motor
ADON = 0; // Disable A/D converter
SWDTEN = 0; // Disable watchdog
iqrfSleep(); // Put the module into Sleep mode

Example 2 // Wake-up on pin change. See example E01-TX and IQRF-macros.h header file.
GIE = 0; // Disable all interrupts
IOCBN.4 = 1; // Negative edge active
IOCBP.4 = 1; // Positive edge active
IOCIE = 1; // Interrupt on change enabled
SWDTEN = 0; // Watchdog disabled
iqrfSleep(); // Sleep
IOCBF.4 = 0; // Clear Interrupt on change flag
if (buttonPressed) // If button is pressed
 { ... } // ...

Example 3 iqrfSleep(); // Sleep
 ...
 ... // Wake-up, RF IC remains off
 ...
stopLEDR(); // Disable peripherals to minimize consumption
sleep(); // Faster (if RF IC is off). This is not an IQRF function

 // but a machine instruction supported by C compiler.
pulseLEDR(); // Continue after wake-up

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 5

IQRF OS
setRFsleep

Function Setting RF circuitry in power saving mode (Sleep)

Purpose To put all RF circuitry in Sleep mode. Easy and efficient power management.

Syntax void setRFsleep()
Parameters –

Return value –

Output values • RF IC is set off.
• OS system clock (ticks) are derived from MCU internal RC oscillator instead of precise RF IC crystal.

Preconditions –

Remarks 0.6 mA typ. is saved. RF sesponse is prolonged for 2 ms typ., 7 ms max. due to wake-up.
Wake-up can be caused by setRFready, RFTXpacket, RFRXpacket, checkRF or
getSupplyVoltage.

Side effects –

See also setRFready, iqrfSleep, getSupplyVoltage, checkRF, RFTXpacket, RFRXpacket
Example setRFsleep(); // Put the RF circuitry in Sleep mode

setRFready

Function Wake RF circuitry up

Purpose To wake RF circuitry up in advance for faster response. Easy and efficient power management.

Syntax void setRFready()
Parameters –

Return value –

Output values • RF IC is set on.
• IQMESH timing is based on precise RF IC crystal oscillator instead of MCU internal RC one.

Preconditions –

Remarks Takes ~7 ms

Side effects –

See also setRFsleep, iqrfSleep, getSupplyVoltage, checkRF, RFTXpacket, RFRXpacket
Example setRFready(); // Wake the RF circuitry up from RF sleep in advance

... // at least 2 ms before RF operation
RFTXpacket(); // for immediate reaction

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 6

IQRF OS
debug

Function Enter the debug mode

Purpose IQRF OS directly supports debugging and testing. It is possible to stop the application wherever you
need and display internal values (variables, RAM registers, EEPROM etc.) and then continue later on.

Syntax void debug()
Parameters –

Return value –

Output values OS directly returns no value but supports using W (PIC accumulator) to identify which of the debug
points is currently active.

Preconditions • Debug should be used with corresponding development kit (e.g. CK-USB-04) and the IQRF IDE
development environment.

• To avoid possible HW collision with respect to user application, debug operates only under the
following conditions:
• Pins C5 to C8 are configured for SPI slave in respective TRIS bits (C8 out, the others in). It is

arranged by OS by default.
• The Check Mode function is enabled in IQRF IDE. Otherwise no communication on these pins is

initiated by debug tools even though TR is in debug mode until the Check Mode is enabled.
• SPI need not be enabled by enableSPI

Remarks Number of debug() instances is unlimited. The application is running until a debug function is
encountered. Then the program is stopped and the module is switched to the debug mode allowing IQRF
IDE to display values. The module stays in the debug mode until the user selects the Skip Debug button.
Then the application program continues running until another debug function is encouneterd and so on.
See IQRF IDE Help and example E04-EEPROM [10].

Side effects • param1 to param4 are not displayed
• Watchdog is cleared while in Debug mode

See also –

Example if (compareBufferINFO2RF(4))
 W = 1; // match
else
 W = 2; // mismatch
debug(); // Skip Debug 1 or 2 will be displayed here according the result

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 7

IQRF OS
getSupplyVoltage

Function Power supply measurement (up to 3.8 V)

Purpose Battery check (for discharge-sensitive batteries)

Syntax uns8 getSupplyVoltage()
Parameters –

Return value level = 1, 2, …15 Voltage > 2.25 V + level × 0.1 V
Output values –

Preconditions –

Remarks • Internal power supply voltage is checked.
• In case of TR modules with LDO it is the LDO output but not actual battery voltage. This value is 3.0 V

typ. if battery is O.K. and drops down if battery is low.
• To evaluate the battery, take into consideration your battery type and power supply circuitry with

respect to diodes and other possible voltage drops.
• The detector circuit has a built-in 50 mV hysteresis.

Side effects The RF circuitry wakes up (in case of sleeping).

See also setRFsleep
Example if (getSupplyVoltage()<7)

 … // Low battery
else
 … // Voltage > 2.95V

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 8

IQRF OS
getTemperature

Function Read temperature from on-board sensor

Purpose Temperature measurement

Syntax uns8 getTemperature()
Parameters –

Return value • Temperature in °C, integer part, not rounded
• Negative temperatures are in two's complement format (e.g. 0xFB means -5 °C)

Output values param3: complete 12 b output value of the sensor in 0.0625 °C units. Thus, lower 4 b represent the
fractional part and upper 8 b represent the integer part of temperature. Negative temperatures are in
two's complement format. See datasheet of the sensor.

Examples:

Temperature Return value param3 Temperature Return value param3
50 °C 0x32 0x320 0 °C 0x00 0x000
5 °C 0x05 0x050 -0.5 °C 0xFF 0xFF8
5.5 °C 0x05 0x058 -1 °C 0xFF 0xFF0
0.75 °C 0x00 0x00C -8 .25 °C 0xF7 0xF7C

Preconditions • For TR modules with the "T" postfix only, e.g. TR-52DTx
• 100 ms delay is required after wake up from sleep

Remarks • TMP112 (TI) temperature sensor is used
• Resolution 0.0625 °C, accuracy: 0.5 °C
• See example E08–TEMPERATURE [10]

Side effects –

See also –

Example1 // For positive temperatures only
uns8 tempInt; // Temperature, integer part
uns8 tempFract; // Temperature, fractional part
tempInt = getTemperature();
tempFract = param3.low8 & 0x0F // Temperature == tempInt + tempFract/16

// Temperature == param3 * 0.0625 in °C
Example2 // Either positive or negative temperatures, fractional part ignored

T = g.7) {
 sign = "-";etTemperature(); // Integer part of temperature
if (T // Negative
 T = (T ^ 0xFF) + 1; // Get absolute value in °C
 }
else
 sign = "+"; // Positive

Example3 // Either positive or negative temperatures, with fractional part
if (getTemperature() >= 0x80) {
 sign = "-"; // Negative
 T = (param3 ^ 0xFFF) + 1; // Get absolute value, in 0.0625°C units
 }
else
 sign = "+"; // Positive

Example4 // Temperature measurement after wake-up from sleep
iqrfSleep();
waitDelay(10); // 100 ms delay required
T = getTemperature();

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 9

IQRF OS
Active waiting

waitMS

Function Wait specified number of miliseconds

Purpose Time delay generation

Syntax void waitMS(ms)
Parameters ms - time to wait in miliseconds (1 - 255)

Return value –

Output values –

Preconditions This function can be combined with waitDelay, startCapture and captureTicks.

Remarks This is an active waiting (on OS foreground). No other operation runs on OS foreground during waiting.
Time precission depends on internal RC oscillator. Thus, the delay can vary with temperature etc. See
respective PIC datasheet [8].

Side effects –

See also waitDelay, startDelay, startLongDelay
Example waitMS(10); // Delay 10 ms. Program stays here for the whole 10 ms period

 ... // and continues here just after the period elapsed.

waitDelay

Function Wait specified number of ticks

Purpose Time delay generation

Syntax void waitDelay(ticks)
Parameters ticks – time to wait in 10 ms periods (1 - 255)

Return value –

Output values –

Preconditions This function can be combined with waitMS.

Remarks This is the active waiting (on OS foreground). No other operation runs on OS foreground during waiting.

Side effects • This function must not be combined with startDelay and startLongDelay.
• Internal ticks are based on internal RC oscillator. Thus, the delay can vary with temperature etc. See

respective PIC datasheet [8].
• Delay in first tick can vary from 0 ms to 10 ms. If complete 10 ms is needed also in the first tick, use
waitNewTick firstly.

• For short time delays waitMS is more precise.

See also waitMS, startDelay, startLongDelay
Example 1 // LED on for 0.5 s

_LED = 1;
waitDelay(50); // Delay 500 ms. Program stays here for 500 ms
_LED = 0; // and continues here just after the period elapsed.

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 10

IQRF OS
waitNewTick

Function Wait for a new tick

Purpose Timing synchronization of user operations

Syntax void waitNewTick()
Parameters –

Return value –

Output values –

Preconditions –

Remarks Active waiting (on OS foreground) until a new tick starts. No other operation runs on OS foreground
during this waiting.

Side effects –

See also waitMS, waitDelay
Example waitNewTick(); // To generate a pulse as precise as possible

IO1 = 1;
waitDelay(1); // 10 ms
IO1 = 0;

Timing on background

startCapture

Function Reset and start the Capture timer

Purpose Initialization of time measurement or delay generation

Syntax void startCapture()
Parameters –

Return value –

Output values –

Preconditions This function can be combined with waitMS.

Remarks Capture timer is a resettable counter of OS ticks (10 ms system intervals) running on OS background.
This function clears the counter and starts counting.

Side effects Functionality is affected by bondRequest, bondNewNode and RFRXpacket.

See also captureTicks
Example See captureTicks

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 11

IQRF OS
captureTicks

Function Get number of ticks counted from the last startCapture and captureTicks calling.

Purpose Measurement of elapsed time.

Syntax void captureTicks()
Parameters –

Return value –

Output value • param3: ticks counted from the last startCapture (0 - 65535)
• param4: ticks counted from the last captureTicks (0 - 65535)

Preconditions • startCapture should be used at least once before.
• To ensure correct operation the counter must not overflow. That is why captureTicks should be

called max. ~655 s after last startCapture or captureTicks calling.

Remarks See example E05–DELAYS [10]

Side effects Functionality is affected by bondRequest, bondNewNode and RFRXpacket.
Internal ticks are based on internal RC oscillator. Thus, the delay can vary with temperature etc. See
respective PIC datasheet [8].

See also startCapture
Example startCapture(); // Reset counter of ticks

waitMS(200); // Delay 200 ms
captureTicks(); // param3 == 20
waitMS(150); // Delay 150 ms
captureTicks(); // param3 == 35, param4 == 15
startCapture(); // Reset counter of ticks
waitMS(100); // Delay 100 ms
captureTicks(); // param3 == 10

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 12

IQRF OS
startDelay

Function Preset and start the Delay timer

Purpose Initialization of time measurement or delay generation

Syntax void startDelay(ticks)
Parameters uns8 ticks: number of ticks (10 ms system intervals) to be measured (1-255)

Return value –

Output values –

Preconditions This function can be combined with waitMS and startLongDelay.

Remarks The Delay timer measures specified time period on OS background. The result is available via the
isDelay function.

Side effects This function does not work properly if the waitDelay, startLongDelay functions are active.
• Delay in first tick can vary from 0 ms to 10 ms. If complete 10 ms is needed also in the first tick, use
waitNewTick firstly.

See also isDelay, startLongDelay, waitDelay
Example See isDelay

startLongDelay

Function Preset and start the LongDelay timer

Purpose Initialization of time measurement or delay generation

Syntax void startLongDelay(ticks)
Parameters uns16 ticks: number of ticks (10 ms system intervals) to be measured (1-65535)

Return value –

Output values –

Preconditions This function can be combined with waitMS and startDelay.

Remarks The Delay timer measures specified time period on OS background. The result is available via the
isDelay function.

Side effects This function does not work properly if the waitDelay, startDelay functions are active.
• Delay in first tick can vary from 0 ms to 10 ms. If complete 10 ms is needed also in the first tick, use
waitNewTick firstly.

See also isDelay, startDelay, waitDelay
Example See isDelay

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 13

IQRF OS
isDelay

Function Information whether specified delay is still in progress

Purpose Time measurement or delay generation

Syntax bit isDelay()
Parameters –

Return value • 1: still in progress
• 0: elapsed

Output values –

Preconditions startDelay or startLongDelay should be used before.

Remarks • The (Long)Delay timer measures specified time period. The result is available via the isDelay
function.

• Tip: the clrwdt instruction should be used to avoid unintentional watchdog reset during the
delay.

• See example E05–DELAYS [10].

Side effects –

See also startDelay, startLongDelay
Example1 // LED on for 1 s

_LED = 1;
startDelay(100); // Start 1 sec delay counting on OS background
while (isDelay()) // Wait until the delay is over
{
 clrwdt(); // Any useful operation on OS foreground can be
 ... // performed during waiting
}
_LED = 0; // Continue here after 1 sec

Example2 // LED on for 10 s
_LED = 1;
startLongDelay(1000); // Start 10 sec delay counting on OS background
while (isDelay()) // Wait until the delay is over
{
 clrwdt(); // Any useful operation on OS foreground can be
 ... // performed during waiting
}
_LED = 0; // Continue here after 10 sec

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 14

IQRF OS
LED indication

setOnPulsingLED

Function LEDs On time setting (red as well as green)

Purpose Specification of the "On" time for LEDs (either for a single flash or for blinking)

Syntax void setOnPulsingLED(ticks)
Parameters uns8 ticks: number of ticks (10 ms system intervals) (1-255)

Return value –

Output values –

Preconditions –

Remarks Default value is 5 (50 ms).

Side effects –

See also setOffPulsingLED, pulsingLEDR, pulseLEDR, pulsingLEDG, pulseLEDG
Example See setOffPulsingLED

setOffPulsingLED

Function LEDs Off time setting (red as well as green)

Purpose Specification of the "Off" time for LEDs (for blinking)

Syntax void setOffPulsingLED(ticks)
Parameters uns8 ticks: number of ticks (10 ms system intervals) (1-255)

Return value –

Output values –

Preconditions –

Remarks Default value is 20 (200 ms).

Side effects –

See also setOnPulsingLED, pulsingLEDR, pulsingLEDG
Example // Change blinking to 250 ms On / 750 ms Off

setOnPulsingLED(25); // 250 ms On
setOffPulsingLED(75); // 750 ms Off

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 15

IQRF OS
pulsingLEDR

Function Red LED blinking

Purpose Continuous red LED blinking on OS background

Syntax void pulsingLEDR()
Parameters –

Return value –

Output values –

Preconditions Blinking times should be defined in advance by setOnPulsingLED and setOffPulsingLED.
The appropriate PIC pin is configured as an output automatically.

Remarks Blinking continues until it is stopped by the user (e.g. by stopLEDR).

Side effects • The appropriate PIC pin is not restored to the state before pulsingLEDR
(TRISx.x == 0, _LEDR == 0 after finishing in background).

• Possible user LEDR pin changes in foreground result in the following:
• Changed pin level (in PORT or LATCH register) is overriden in background and pulsing continues.
• Changed pin direction (in TRIS register) is not overriden in background and pulsing is stopped.

See also setOnPulsingLED, setOffPulsingLED, stopLEDR, pulseLEDR
Example1 pulsingLEDR(); // continuous blinking on OS background
Example1 // Blinking for 2 s

pulsingLEDR(); // blinking for 2 s on OS background
waitDelay(200); // 2 s delay generated on foreground
stopLEDR(); // Stop blinking

pulseLEDR

Function Single red LED flash

Purpose Red LED flash on OS background

Syntax void pulseLEDR()
Parameters –

Return value –

Output values –

Preconditions Flash time should be defined in advance by setOnPulsingLED. The appropriate PIC pin is configured
as an output automatically.

Remarks The on-board LEDs can also be directly controlled on OS foreground using C commands for
manipulating the _LEDR output (the pin the red LED is connected to) and corresponding control bit
(TRISx.x - see IQRF-memory.h header file).

Side effects • The appropriate PIC pin is not restored to the state before pulseLEDR
(TRISx.x == 0, _LEDR == 0 after finishing on background).

• Possible user LEDR pin changes in foreground result in the following:
• Changed pin level (in PORT or LATCH register) is overriden in background and the pulse continues.
• Changed pin direction (in TRIS register) is not overriden in background and the pulse is stopped.

See also setOnPulsingLEDR, pulsingLEDR, stopLEDR
Example setOnPulsingLEDR(10); // 100 ms On

pulseLEDR(); // Single red LED flash for 100 ms on OS background
 ... // Program continues immediately,

 // not waiting until the delay expires.
 // LED will be switched off after 100 ms automatically

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 16

IQRF OS
stopLEDR

Function Red LED off, blinking stopped

Purpose Stops the red LED activity on OS background

Syntax void stopLEDR()
Parameters –

Return value –

Output values –

Preconditions –

Remarks –

Side effects • The appropriate PIC pin is not restored to the state before pulsingLEDR/pulseLEDR
(TRISx.x == 0, _LEDR == 0 after finishing on background).

• Possible user LEDR pin level (in PORT or LATCH register) changed in foreground can be overriden in
background.

See also pulsingLEDR, pulseLEDR
Example1 pulsingLEDR(); // Start blinking on OS background

 ... // Blinking continues during any operation
stopLEDR(); // Stop blinking

Example2 pulseLEDR(); // Red LED On on OS background
 ... // continuously lighting during any operation

// until specified time expired
stopLEDR(); // or LED is switched Off by this command

Example3 _LEDR = 1; // LEDR on
 ...
stopLEDR(); // LEDR off

pulsingLEDG

Function Green LED blinking

Purpose Continuous green LED blinking on OS background

Syntax void pulsingLEDG()
Parameters –

Return value –

Output values –

Preconditions Blinking times should be defined in advance by setOnPulsingLED and setOffPulsingLED.
The appropriate PIC pin is configured as an output automatically.

Remarks Blinking continues until it is stopped by the user (e.g. by stopLEDG).

Side effects • The appropriate PIC pin is not restored to the state before pulsingLEDG
(TRISx.x == 0, _LEDG == 0 after finishing in background).

• Possible user LEDG pin changes in foreground result in the following:
• Changed pin level (in PORT or LATCH register) is overriden in background and pulsing continues.
• Changed pin direction (in TRIS register) is not overriden in background and pulsing is stopped.

See also setOnPulsingLED, setOffPulsingLED, stopLEDG, pulseLEDG
Example1 pulsingLEDG(); // continuous blinking on OS background
Example1 // Blinking for 2 s

pulsingLEDG(); // blinking for 2 s on OS background
waitDelay(200); // 2 s delay generated on foreground
stopLEDG(); // Stop blinking

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 17

IQRF OS
pulseLEDG

Function Single green LED flash

Purpose Green LED flash on OS background

Syntax void pulseLEDG()
Parameters –

Return value –

Output values –

Preconditions Flash time should be defined in advance by setOnPulsingLED. The appropriate PIC pin is configured
as an output automatically.

Remarks The on-board LEDs can also be directly controlled on OS foreground using C commands for
manipulating the _LEDG output (the pin the green LED is connected to) and corresponding control bit
(TRISx.x - see IQRF-memory.h header file).

Side effects • The appropriate PIC pin is not restored to the state before pulseLEDG
(TRISx.x == 0, _LEDG == 0 after finishing in background).

• Possible user LEDG pin changes in foreground result in the following:
• Changed pin level (in PORT or LATCH register) is overriden in background and the pulse continues.
• Changed pin direction (in TRIS register) is not overriden in background and the pulse is stopped.

See also setOnPulsingLEDG, pulsingLEDG, stopLEDG
Example setOnPulsingLEDG(10); // 100 ms On

pulseLEDG(); // Single green LED flash for 100 ms on OS background
 ... // Program continues immediately,

 // not waiting until the delay expires.
 // LED will be switched off after 100 ms automatically

stopLEDG

Function Green LED off, blinking stopped

Purpose Stops the green LED activity on OS background

Syntax void stopLEDG()
Parameters –

Return value –

Output values –

Preconditions –

Remarks –

Side effects • The appropriate PIC pin is not restored to the state before pulsingLEDG/pulseLEDG
(TRISx.x == 0, _LEDG == 0 after finishing on background).

• Possible user LEDR pin level (in PORT or LATCH register) changed in foreground can be overriden in
background.

See also pulsingLEDG, pulseLEDG
Example1 pulsingLEDG(); // Start blinking on OS background

 ... // Blinking continues during any operation
stopLEDG(); // Stop blinking

Example2 pulseLEDG(); // Green LED On on OS background
 ... // continuously lighting during any operation

// until specified time expired
stopLEDG(); // or LED is switched Off by this command

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 18

IQRF OS
MCU EEPROM

eeReadByte

Function Read one byte from specified location in EEPROM

Purpose Access to EEPROM

Syntax uns8 eeReadByte(addr)
Parameters uns8 addr: address in EEPROM (0 to 0xBF). See EEPROM map [2].

Return value • Value (0 to 255) read from specified EEPROM location
• 0 when attempted to read from address 0xC0 or higher

Output values –

Preconditions –

Remarks • Direct user access to EEPROM (using registers EECONx etc.) is not allowed for security reasons,
specialized OS functions are intended for this.

• EEPROM area dedicated to OS (locations 0xC0 or higher) is not accessible.
See example E04–EEPROM [10].

Side effects –

See also eeReadData, eeWriteByte, eeWriteData
Example1 i = eeReadByte(0); // store 1 byte from EEPROM from address 0 to i
Example2 // Illegal access: Avoid access to EEPROM locations 192 (0xC0) or higher

i = eeReadByte(200); // Reading from protected area is redirected to 160 (0xA0)

eeReadData

Function Read a block of specified length from specified location in EEPROM to bufferINFO
Purpose Block access to EEPROM

Syntax void eeReadData(addr, length)
Parameters • uns8 addr: address in EEPROM (0 to 0xBF - length + 1). See EEPROM map [2].

• uns8 length: number of bytes to be read (1 to 32)

Return value –

Output values • bufferINFO[0 to length – 1]
• bufferINFO[0 to length – 1] is cleared when attempted to read from address 0xC0 or higher

Preconditions –

Remarks • Direct user access to EEPROM (using registers EECONx etc.) is not allowed for security reasons,
specialized OS functions are intended for this.

• EEPROM area dedicated to OS (locations 0xC0 or higher) is not accessible.
See example E04–EEPROM [10].

Side effects –

See also eeReadByte, eeWriteByte, eeWriteData
Example1 eeReadData(10, 16); // copy 16 B from EEPROM from address 10 to bufferINFO

 // bufferINFO[0] = EEPROM[10]
 // ...
 // bufferINFO[15] = EEPROM[25]

Example2 // Illegal access: Avoid access to EEPROM locations 192 (0xC0) or higher
eeReadData(200, 16); // EEPROM address 160 is used instead of protected area

 // bufferINFO[0] = EEPROM[160]
 // ...
 // bufferINFO[15] = EEPROM[160]

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 19

IQRF OS
eeWriteByte

Function Write one byte to specified location in EEPROM

Purpose Access to EEPROM

Syntax void eeWriteByte(addr, data)
Parameters • uns8 addr: address in EEPROM (0xA0 to 0xBF for Coordinator and 0 to 0xBF for other devices).

See EEPROM map [2].
• uns8 data: value to be written (0 to 255)

Return value –

Output values –

Preconditions –

Remarks • Direct user access to EEPROM (using registers EECONx etc.) is not allowed for security reasons,
specialized OS functions are intended for this.

• EEPROM area dedicated to OS (locations 0xC0 or higher) is not accessible.
See example E04–EEPROM [10].
• Any attempt to write to protected area above 0xBF leads to no operation.

Side effects –

See also eeReadByte, eeReadData, eeWriteData
Example1 eeWriteByte(191, 0x75) // store 0x75 to EEPROM to address 191

eeWriteByte(0x80, X) // copy X to EEPROM to address 0x80
Example2 // Illegal access: Avoid access to EEPROM locations 192 (0xC0) or higher

eeWriteByte(198, 0x75); // Attempt to write to protected area – nothing is written.

eeWriteData

Function Write a block of specified length from bufferINFO to specified location in EEPROM

Purpose Block access to EEPROM

Syntax void eeWriteData(addr, length)
Parameters • uns8 addr: address in EEPROM . See EEPROM map [2].

• (0xA0 to 0xBF - length + 1) for Coordinator
• (0 to 0xBF - length + 1) for other devices

• uns8 length: number of bytes to be written from bufferINFO (1 to 32)

Return value –

Output values –

Preconditions –

Remarks • Direct user access to EEPROM (using registers EECONx etc.) is not allowed for security reasons,
specialized OS functions are intended for this.

• EEPROM area dedicated to OS (locations 0xC0 or higher) is not accessible.
See example E04–EEPROM [10].

Side effects • Any attempt to write to protected area above 0xBF leads to no operation.

See also eeReadByte, eeReadData, eeWriteByte
Example1 eeWriteData(10,16); // copy 16 B from bufferINFO to EEPROM to address 10

 // EEPROM[10] = bufferINFO[0]
 // ...
 // EEPROM[25] = bufferINFO[15]

Example2 // Illegal access: Avoid access to EEPROM locations 192 (0xC0) or higher
eeWriteData(200,16); // Attempt to write to protected area – nothing is

 // written.

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 20

IQRF OS
Serial EEPROM

eeeReadData

Function Read a 16 B data block from specified location in serial EEPROM to bufferINFO
Purpose Block access to serial EEPROM

Syntax void eeeReadData(addr)
Parameters • uns16 addr: address in serial EEPROM (0 to 0x7FF).

Return value –

Output values bufferINFO[0 to 15]
Preconditions Do not use for Coordinator in networks utilizing Discovery

Remarks –

Side effects –

See also eeeWriteData
Example eeeReadData(10); // copy 16 B from serial EEPROM from address 10 to bufferINFO

 // bufferINFO[0] = serial EEPROM[10]
 // ...
 // bufferINFO[15] = serial EEPROM[25]

eeeWriteData

Function Write a 16 B data block from bufferINFO to specified location in EEPROM

Purpose Block access to serial EEPROM

Syntax void eeeWriteData(addr)
Parameters • uns16 addr: address in serial EEPROM (0 to 0x7FF).

Return value –

Output values –

Preconditions Do not use for Coordinator in networks utilizing Discovery

Remarks –

Side effects –

See also eeeReadData
Example eeeWriteData(5); // copy 16 B from bufferINFO to serial EEPROM from address 5

 // EEPROM[5] = bufferINFO[0]
 // ...
 // EEPROM[20] = bufferINFO[15]

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 21

IQRF OS
RAM

readFromRAM

Function Read one byte from specified location in RAM

Purpose Indirect access to RAM registers

Syntax uns8 readFromRAM(addr)
Parameters uns16 addr: linear or traditional memory location address

Return value Value read from specified location

Output values –

Preconditions –

Remarks RAM can be accessed either directly (using common C commands like X = Y;) or indirectly. But indirect
access using the INDFx registers is not allowed. Due to security reasons all instructions using INDFx
are removed during Upload. To avoid unintended behavior all constructions using addressing via INDFx
(either by the user or by the compiler) should be omitted. Instead of these IQRF OS provides complete
support for indirect RAM addressing using extra system functions readFromRAM, writeToRAM and
copyMemoryBlock. See example E06–RAM [10].

Side effects –

See also writeToRAM, copyMemoryBlock
Example1 // Not allowed. The compiler uses INDFx in such cases.

for (i=0; i<5; i++)
{
 A = bufferRF[i];
 …
}

Example2 // Correct
for (i=0; i<5; i++)
{
 A = readFromRAM(bufferRF + i);
 …
}

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 22

IQRF OS
writeToRAM

Function Write one byte to specified location in RAM

Purpose Indirect access to RAM registers

Syntax void writeToRAM(addr, value)
Parameters • uns16 addr: traditional or linear memory location address

• uns8 value: value to be written

Return value –

Output values –

Preconditions • Avoid writing to RAM areas dedicated to OS and to PIC special function registers otherwise OS can
collapse. See RAM map [2].

Remarks RAM can be accessed either directly (using common C commands like X = Y;) or indirectly. But indirect
access using the INDFx registers is not allowed. Due to security reasons all instructions using INDFx
are removed during Upload. To avoid unintended behavior all constructions using addressing via INDFx
(either by the user or by the compiler) should be omitted. Instead of this IQRF OS provides complete
support for indirect RAM addressing using extra system functions readFromRAM, writeToRAM and
copyMemoryBlock. See example E06–RAM [10].

Side effects –

See also readFromRAM, copyMemoryBlock
Example1 // Not allowed. The compiler uses INDFx in such cases.

for (i=0; i<5; i++)
 bufferRF[i] = i;

Example2 // Correct
for (i=0; i<5; i++)
 writeToRAM(bufferRF + i, i);

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 23

IQRF OS
Buffers

All functions for copying buffers (copyBufferINFO2RF, copyBufferINFO2COM, copyBufferRF2COM,
copyBufferRF2INFO, copyBufferCOM2RF, copyBufferCOM2INFO) can use offsets memoryOffsetFrom and
memoryOffsetTo. Offsets are applied when at least one of them is different from zero only. Then the following principle
will take place: memoryOffsetFrom specifies relative offset in the From buffer and memoryOffsetTo specifies relative
offset in the To buffer. It means that data is not read starting from bufferXX[0] but from
bufferXX[memoryOffsetFrom] and is not stored starting from bufferYY[0] but from
bufferYY[memoryOffsetTo]. Just the final part of the bufferXX is copied (from memoryOffsetFrom up to the end
of the bufferXX or bufferYY, whichever is reached first).

If both memoryOffsetFrom = 0 and memoryOffsetTo = 0 complete buffers are copied . Offsets are default disabled
(cleared after reset as well as after every buffer copy).

copyBufferINFO2COM

Function Copy bufferINFO to bufferCOM
Purpose Data transfer between buffers

Syntax void copyBufferINFO2COM()
Parameters –

Return value –

Output values –

Preconditions Offsets memoryOffsetFrom and memoryOffsetTo are applied (see above).

Remarks • If memoryOffsetFrom = 0 and memoryOffsetTo = 0 complete 64 B is copied.
• See example E06 - RAM [10].

Side effects –

See also clearBufferINFO, copyBufferINFO2RF, copyBufferRF2COM, copyBufferRF2INFO,
copyBufferCOM2RF, copyBufferCOM2INFO, compareBufferINFO2RF, copyMemoryBlock

Example1 copyBufferINFO2COM();
Example2 memoryOffsetFrom = 0; // bufferINFO to be copied

memoryOffsetTo = 10; // to bufferCOM starting from bufferCOM[10].
copyBufferINFO2COM; // Just first 54 B is copied (until bufferCOM full).

copyBufferINFO2RF

Function Copy bufferINFO to bufferRF
Purpose Data transfer between buffers

Syntax void copyBufferINFO2RF()
Parameters –

Return value –

Output values –

Preconditions Offsets memoryOffsetFrom and memoryOffsetTo are applied (see above).

Remarks • If memoryOffsetFrom = 0 and memoryOffsetTo = 0 complete 64 B is copied.
• See example E06 - RAM [10].

Side effects –

See also clearBufferINFO, copyBufferINFO2COM, copyBufferRF2COM, copyBufferRF2INFO,
copyBufferCOM2RF, copyBufferCOM2INFO, compareBufferINFO2RF, copyMemoryBlock

Example copyBufferINFO2RF();

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 24

IQRF OS
copyBufferRF2COM

Function Copy bufferRF to bufferCOM
Purpose Data transfer between buffers

Syntax void copyBufferRF2COM()
Parameters –

Return value –

Output values –

Preconditions Offsets memoryOffsetFrom and memoryOffsetTo are applied (see above).

Remarks • If memoryOffsetFrom = 0 and memoryOffsetTo = 0 complete 64 B is copied.
• See example E06 - RAM [10].

Side effects –

See also clearBufferINFO, copyBufferINFO2RF, copyBufferINFO2COM, copyBufferRF2INFO,
copyBufferCOM2RF, copyBufferCOM2INFO, compareBufferINFO2RF, copyMemoryBlock

Example copyBufferRF2COM();

copyBufferRF2INFO

Function Copy bufferRF to bufferINFO
Purpose Data transfer between buffers

Syntax void copyBufferRF2INFO()
Parameters –

Return value –

Output values –

Preconditions Offsets memoryOffsetFrom and memoryOffsetTo are applied (see above).

Remarks • Copying is limited up to first 64 B of bufferRF only.
• If memoryOffsetFrom = 0 and memoryOffsetTo = 0 complete 64 B is copied.
• See example E06 - RAM [10].

Side effects –

See also clearBufferINFO, copyBufferINFO2COM, copyBufferINFO2RF, copyBufferRF2COM,
copyBufferCOM2RF, copyBufferCOM2INFO, compareBufferINFO2RF, copyMemoryBlock

Example copyBufferRF2INFO();

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 25

IQRF OS
copyBufferCOM2RF

Function Copy bufferCOM to bufferRF
Purpose Data transfer between buffers

Syntax void copyBufferCOM2RF()
Parameters –

Return value –

Output values –

Preconditions Offsets memoryOffsetFrom and memoryOffsetTo are applied (see above).

Remarks • If memoryOffsetFrom = 0 and memoryOffsetTo = 0 complete 64 B is copied.
• See example E06 - RAM [10].

Side effects –

See also clearBufferINFO, copyBufferINFO2COM, copyBufferINFO2RF, copyBufferRF2COM,
copyBufferRF2INFO, copyBufferCOM2INFO, compareBufferINFO2RF, copyMemoryBlock

Example copyBufferCOM2RF();

copyBufferCOM2INFO

Function Copy bufferCOM to bufferINFO
Purpose Data transfer between buffers

Syntax void copyBufferCOM2INFO()
Parameters –

Return value –

Output values –

Preconditions Offsets memoryOffsetFrom and memoryOffsetTo are applied (see above).

Remarks • If memoryOffsetFrom = 0 and memoryOffsetTo = 0 complete 64 B is copied.
• See example E06 - RAM [10].

Side effects –

See also clearBufferINFO, copyBufferINFO2COM, copyBufferINFO2RF, copyBufferRF2COM,
copyBufferRF2INFO, copyBufferCOM2RF, copyMemoryBlock

Example copyBufferCOM2INFO();

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 26

IQRF OS
compareBufferINFO2RF

Function Compare bufferINFO and bufferRF with respect to specified length

Purpose Buffer comparison

Syntax bit compareBufferINFO2RF(length)
Parameters uns8 length: number of bytes to be compared (1 to 64)

Return value • 1 – match
• 0 – mismatch

Output values –

Preconditions –

Remarks • Comparing is limited up to first 64 B of bufferRF only.
• If memoryOffsetFrom = 0 and memoryOffsetTo = 0 complete 64 B is compared.
• See example E06 - RAM [10].

Side effects –

See also clearBufferINFO, copyBufferINFO2RF, copyBufferRF2INFO, swapBufferINFO
Example if (!compareBufferINFO2RF(32)) // Compare 32 B

 then Error = 1; // Error if mismatch

swapBufferINFO

Function Swap bufferINFO and bufferAUX
Purpose Temporary bufferINFO saving

Syntax void swapBufferINFO()
Parameters –

Return value –

Output values Content of bufferINFO and bufferAUX (64 B) is swapped. See example E06 - RAM [10].

Preconditions –

Remarks –

Side effects –

See also moduleInfo, appInfo
Example swapBufferInfo(); // Temporarily save bufferInfo to bufferAUX

appInfo(); // Get user data from EEPROM
...
swapBufferInfo(); // and restore previous data in bufferInfo

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 27

IQRF OS
clearBufferINFO

Function Clear bufferINFO
Purpose bufferINFO clearing

Syntax void clearBufferINFO()
Parameters –

Return value –

Output values –

Preconditions –

Remarks Complete bufferINFO (64 B) is cleared (filled with zeros). See example E06 - RAM [10].

Side effects –

See also copyBufferINFO2COM, copyBufferINFO2RF, copyBufferRF2INFO, copyBufferCOM2INFO,
compareBufferINFO2RF, copyMemoryBlock, swapBufferINFO

Example clearBufferINFO();

clearBufferRF

Function Clear bufferRF
Purpose bufferRF clearing

Syntax void clearBufferRF()
Parameters –

Return value –

Output values –

Preconditions –

Remarks Complete bufferRF (128 B) is cleared (filled with zeros). See example E06 - RAM [10].

Side effects –

See also copyBufferRF2COM, copyBufferRF2INFO, copyBufferCOM2RF, copyBufferINFO2RF,
compareBufferINFO2RF, copyMemoryBlock

Example clearBufferRF();

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 28

IQRF OS
Data blocks

copyMemoryBlock

Function Copy specified RAM block to specified location

Purpose Copy memory block within RAM

Syntax void copyMemoryBlock (from, to, length)
Parameters • uns16 from: starting address of the block to be copied

• uns16 to: destination address
• uns8 length: block length in bytes

Return value –

Output values –

Preconditions • Either traditional or linear addresses can be used.
• Upward overlapping the source and the destination RAM blocks being copied is not allowed.
• Avoid writing to RAM areas dedicated to OS otherwise OS can collapse. See the RAM map [2].

Remarks • See RAM map [2] and example E06 - RAM [10].

Side effects –

See also writeToRAM, readFromRAM
Example1 copyMemoryBlock(0x2390, 0x23C0, 10); // copy 10 B block from 0x2390 to 0x23C0
Example2 copyMemoryBlock(bufferRF+10, bufferCOM+1, 8); // 8 bytes copied:

 // bufferCOM[1] = bufferRF[10] ... bufferCOM[8] = bufferRF[17]
Example3 copyMemoryBlock(array+0, array+1, sizeof(array)–1); // Upward, not allowed
Example4 copyMemoryBlock(array+1, array+0, sizeof(array)-1); // Downward, allowed

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 29

IQRF OS
moduleInfo

Function Store Module data to bufferINFO
Purpose Get information about transceiver module and OS

Syntax void moduleInfo()
Parameters –

Return value –

Output values bufferINFO[0 to 7]:

address in bufferInfo 7 6 5 4 3 2 1 0

meaning OS build MCU
type

OS
version

Serial number

Module ID

Serial number (Module ID): 4 B identification code unique for each TR module.
OS version:

upper nibble (4 b): Major version
lower nibble (4 b): Minor version. Postfix "D" is not stated in Module identification but can be

 recognized by MCU type ("D" for PIC16LF1938).
MCU type:

3: PIC16F886
4: PIC16LF1938

OS build: OS subversion for the manufacturer only.

Example (all in hexadecimal):
 [0] [1] [2] [3] [4] [5] [6] [7]
bufferINFO[0–7] = 1C 10 00 01 31 04 39 11
Meaning: Coordinator, Module ID = 0100101C, IQRF OS version 3.01D, PIC16LF1936, build 0x1139.

Preconditions –

Remarks –

Side effects –

See also appInfo
Example uns24 SN @ bufferInfo;

uns8 OSv @ bufferInfo[4];
moduleInfo(); // Now SN == module serial number

// and OSv == OS version

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 30

IQRF OS
appInfo

Function Store Application information from EEPROM to bufferINFO
Purpose Get information about user application

Syntax void appInfo()
Parameters –

Return value –

Output values bufferINFO[0 to 31]
Preconditions –

Remarks See IQRF OS User's guide [1] (Identification and Appendix, Memory maps).

Side effects –

See also moduleInfo
Example1 appInfo(); // Copy Application info from EEPROM to bufferINFO

copyBufferINFO2RF(); // and then to bufferRF
Example2 #pragma packedCdataStrings 0 // Application data to EEPROM after compilation

#pragma cdata[__EEAPPINFO] = "Application data, I'm user #01 "
bufferINFO[0] = ‘2’; // Dynamic change of application data
eeWriteData(__EEAPPINFO+29,1); // #01 changed to #02
appInfo(); // "Application data, I'm user #02 " is read

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 31

IQRF OS
SPI

enableSPI

Function Activate SPI communication module and related pins

Purpose Enable SPI communication

Syntax void enableSPI()
Parameters –

Return value –

Output values SPI Status is switched to SPI ready, communication mode.

Preconditions –

Remarks • The PIC internal SPI hardware module and appropriate pins (C5 to C8 or Q6, Q7, Q8 and Q11) are
configured and activated as SPI Slave.

• See SPI Implementation in IQRF TR modules [5] and example E07-SPI [10].

Side effects Related pins can not be used as general I/Os until SPI is disabled via disableSPI.

See also disableSPI, startSPI, stopSPI, getStatusSPI, restartSPI
Example See getStatusSPI

disableSPI

Function Switch SPI HW module off and configure SPI pins as I/Os

Purpose Disable SPI communication

Syntax void disableSPI()
Parameters –

Return value –

Output values SPI Status is switched to SPI not active.

Preconditions –

Remarks The PIC internal SPI hardware module is disabled and related pins (C5 to C8 or Q6, Q7, Q8 and Q11)
are reconfigured as general I/Os. See SPI Implementation in IQRF TR modules [5] and example E07-
SPI [10].

Side effects • The appropriate PIC pins are not restored to the state before enableSPI calling.
• Current packet is lost by both sides if SPI communication is running on background at this moment.

See also enableSPI, startSPI, stopSPI, getStatusSPI, restartSPI
Example See getStatusSPI

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 32

IQRF OS
startSPI

Function Indicate ready to Master.

Purpose • Initiate SPI packet transmission from Slave (request to Master). Provide data from bufferCOM to
Master according to Master's clock (on OS background).

• startSPI(0) indicates to Master that the Slave is ready to receive data (bufferCOM not full).

Syntax void startSPI(length)
Parameters uns8 length: number of bytes to be sent (0 to 64)

Return value –

Output values SPI Status is switched to:
• SPI data ready – after startSPI(1 to 64)
• SPI ready, Communication mode – after startSPI(0).

Preconditions SPI must be enabled by the enableSPI function before.

Remarks • SPI runs on OS background.
• startSPI(0) is also useful for recovering SPI from communication failures (e.g. the CRC mismatch).
• See SPI Implementation in IQRF TR modules [5] and example E07-SPI [10].

Side effects –

See also enableSPI, disableSPI, stopSPI, getStatusSPI, restartSPI
Example1 // Slave -> Master

bufferCOM[0] = "I";
bufferCOM[1] = "Q";
enableSPI();
startSPI(2); // Request to Master is active on backgroung from now
 ... // and the program just continues here

Example2 startSPI(0); // Reset SPI communication
Example3 See getStatusSPI

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 33

IQRF OS
stopSPI

Function Stop SPI communication

Purpose Suspend SPI transmissions whenever it suits to Slave

Syntax void stopSPI()
Parameters –

Return value –

Output values SPI Status is switched to User stop.

Preconditions –

Remarks • stopSPI is useful e.g. to avoid violation during preparation data to bufferCOM.
• SPI transmission is stopped but SPI remains active (enabled). Communication can continue after next
startSPI.

• stopSPI is not needed after successful SPI reception to protect data received in bufferCOM. Data is
protected by OS (and SPI status stays in mode 3F) until the slave allows further communication e.g.
by the startSPI(0).

• startSPI and stopSPI are not fully complementary. Receiving is allowed just after enableSPI
without previous startSPI, startSPI is meaningful after previous startSPI not followed by
stopSPI etc.

• See SPI Implementation in the IQRF TR modules [5] and example E07-SPI [10].

Side effects Current packet is lost by both sides if SPI communication is running on background at this moment.

See also enableSPI, disableSPI, startSPI, getStatusSPI, restartSPI
Example if (!getStatusSPI()) // If SPI is not in progress

{
 stopSPI(); // Prohibit Master from transmitting

// (not to destroy bufferCOM in background)
 bufferCOM[0] = ... // Prepare data to send
 bufferCOM[1] = ...
 startSPI(2); // Request to send
}

restartSPI

Function Indicate ready to continue SPI transfer to Master .

Purpose Allow to continue SPI transmission (request to Master).

Syntax void restartSPI()
Parameters –

Return value –

Output values

Preconditions Intended after preceeding stopSPI.

Remarks SPI can continue from the state just before stopSPI.

Side effects –

See also startSPI, stopSPI
Example1 startSPI(16); // SPI started

 ...
stopSPI(); // SPI stopped temporarily
 ... // to make some operations
restartSPI(); // and allow to continue

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 34

IQRF OS
getStatusSPI

Function Update SPI flags and packet length and check whether SPI is busy

Purpose Provide application program with information about current SPI status

Syntax bit getStatusSPI()
Parameters –

Return value • 1 – SPI busy
• 0 – SPI not busy

Output values • SPIpacketLength: received packet length
• param2.3 (_SPIRX): 1 – Something received on SPI.
• param2.4 (_SPICRCok): 1 – The last received SPI CRCM was O.K.

Preconditions SPI must be enabled by enableSPI
Remarks • Output values (param2) has different format than SPI status sent to the Master.

• See SPI Implementation in IQRF TR modules [5] and example E07-SPI [10].

Side effects –

See also enableSPI, disableSPI, startSPI, stopSPI, restartSPI
Example1 // Master -> Slave

 enableSPI(); // Master is allowed to transmit from now

Receive:
 clrwdt();
 if (getStatusSPI()) // Wait until SPI is not busy
 goto Receive;

 if (_SPIRX) // Anything received?
 { // Yes:
 if (!_SPICRCok) // CRCM matched?
 { // No:
 startSPI(0); // Restart SPI
 goto Receive; // and try to receive again.
 }

 // Yes:
 // BufferCOM is automatically protected now
 // not to be overwritten by next SPI packet.
 // Thus, stopSPI is not necessary here.
 // Packet length is in SPIpacketLength.

 copyBufferCOM2INFO(); // Store received packet
 startSPI(0); // and then allow Master to transmit again.
 }
 else
 goto Receive; // Nothing received yet

// ... Continue here after successful receiving

 waitMS(1); // Time for finishing startSPI(0) on background
 disableSPI(); // otherwise Master's CRCS check fails.

 // The delay depends on Master application.
Example2 enableSPI();

startSPI(2); // 2 B to send to master
while (getStatusSPI()) // Wait until SPI is not busy
 waitMS(1);
... // Now the transfer is finished

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 35

IQRF OS
RF

setTXpower

Function Set RF output power

Purpose Change RF range

Syntax void setTXpower(level)
Parameters uns8 level: 0 (min.) to 7 (max. – default)

See datasheet of TR module, Table 2.

Return value –

Output values Available read only in the RFpower register

Preconditions –

Remarks –

Side effects –

See also RFTXpacket
Example setTXpower(7); // Max. RF output power

setRFspeed

Function Select RF bit rate

Purpose Select RF bit rate

Syntax void setRFspeed(speed)
Parameters uns8 speed:

• 1 1.2 kb/s (preliminary)
• 2 19.2 kb/s (default)
• 3 57.6 kb/s (preliminary)
• 4 86.2 kb/s (preliminary)

Return value –

Output values Available read only in the RFspeed register

Preconditions Bit rates different from 19.2 kb/s are preliminary, for experimental purpose only.

Remarks • Non-default bit rates are provisionally intended for experimental purposes only.
• Routing is supported for 19.2 kb/s only

Side effects RF channel must be specified after every bit rate change.

See also setRFchannel
Example1 setRFspeed(1); // 1.2 kb/s selected

setRFchannel(...); // channel must be selected then
Example2 setRFspeed(2); // 19.2 kb/s selected

setRFchannel(...); // channel must be selected then

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 36

IQRF OS
setRFband

Function Select RF frequency band

Purpose Select 868 MHz or 916 MHz band

Syntax void setRFband(band)
Parameters uns8 band:

• 0 868 band MHz (default)
• 1 916 band MHz

Return value –

Output values Flag _916MHz in the userInterface register:
_916MHz: 0 – 868 MHz band
 1 – 916 MHz band

Preconditions –

Remarks Default channel is set (52 for 868 MHz band or 104 for 916 MHz band).

Side effects RF channel must be specified after every band change.

See also setRFchannel
Example1 setRFband(1); // 916 MHz band selected
Example2 setRFband(0); // 868 MHz band selected

setRFchannel

Function Set RF channel

Purpose Select free RF channel for not interfered communication

Syntax void setRFchannel(channel)
Parameters • uns8 channel: see IQRF OS User's guide, Appendix 2, Channel map

• Default: 52 (for 868 MHz band)
104 (for 916 MHz band)

Return value –

Output values Available read only in the RFchannel register

Preconditions –

Remarks –

Side effects RF channel must be specified after every bit rate or band change.

See also setRFspeed
Example setRFband(0); // 868 MHz band selected

setRFspeed(3); // 57.6 kb/s bit rate selected
setRFchannel(25); // 868.15 MHz channel selected

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 37

IQRF OS
setRFmode

Function Set RF mode

Purpose Specify power management and signal filtering modes for RF transmission and receipt

Syntax void setRFmode(mode)
Parameters uns8 mode: SWTTFFRR in binary

• S: Stay in RX mode (for fast response for following checkRF, RFRXpacket or RFTXpacket)
1 RX chain stays enabled after RFRXpacket and RFTXpacket
0 RX chain is disabled after RFRXpacket and RFTXpacket

• W: Wait packet end
1 Waits until receipt is finished if it is actually started even though toutRF timeout is over

meanwhile.
0 RFRXpacket is unconditionally finished when toutRF timeout is over.

• TT: TX mode
00 for STD RX mode (standard preamble ~3 ms)
01 for LP RX mode (prolonged preamble ~50 ms)
10 for XLP RX mode (prolonged preamble ~1 s)
11 LP/XLP RX termination on pin change enabled. If enabled, low level on pin C5 (for TR

modules in SIM format) or Q12 (for TR-54D) terminates RF reception in LP/XLP mode.
• FF: Filter incoming signal in LP, XLP and RFIM RX modes (RR ≠ 0). Signal with lower level is

ignored. Relative RF range is shortened due to this filtration. The level corresponds to the
checkRF(x) parameter:
00 x = 5
01 x = 20
10 x = 35
11 x = 50

• RR: RX mode
00 STD RX mode (Standard, transmitting device should have TT=00)
01 LP RX mode (Low power, transmitting device should have TT=01)
10 XLP RX mode (Extra low power, transmitting device should have TT=10)
11 RFIM mode (RFRXpacket is terminated when signal strength falls below the FF level)

Return value –

Output values Available read only in the RFmodeByte register.

Preconditions Non-STD RX modes are intended for bit rate 19.2 kb/s only.

Remarks Default value is mode = 0. See example E10-RFMODE.

Side effects RF circuitry and MCU is temporarily set to sleep during low power RX modes. Thus, all tasks running on
OS background can be untimely canceled. To avoid this, use setRFmode after finishing background
tasks. See Example 2.

See also checkRF
Example1 setRFmode(0b00000000); // RX: STD, no filtering

// TX: for STD RX (standard preambles)
setRFmode(0b00010001); // RX: LP, lowest filtering (5)

// TX: for LP RX (prolonged preambles ~50 ms)
setRFmode(0b00101110); // RX: XLP, highest filtering (50)

// TX: for XLP RX (prolonged preambles ~1 s)
setRFmode(0b00000101); // RX: LP, low filtering (20)

// TX: for STD RX (standard preambles)
setRFmode(0b10001011); // RX: RFIM, high filtering (35), stay in RX mode

// TX: for STD RX (standard preambles)
setRFmode(0b01000000); // RX: STD, no filtering, wait packet end

// TX: for STD RX (standard preambles)
Example2 while (getStatusSPI()) // wait for finishing SPI on background

 clrwdt();
disableSPI();
SWDTEN = 0; // possibly disable watchdog for lower consumption
setRFmode(0b00010001); // and go to LP mode then

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 38

IQRF OS
checkRF

Function Check incoming RF signal strength for specified level.

Purpose Incoming RF signal detection to start RF receiving.

Syntax bit checkRF(level)
Parameters uns8 level = DQI + RSSI_FILTER

• DQI (Data Quality Indicator):
• 0x80 DQI enabled
• 0 DQI disabled
If DQI is enabled checkRF returns true when there is an extended probability that just the FSK
modulation is detected. See the RF IC datasheet. This can help to distinguish noise from valid signal.

• RSSI_FILTER: 0 to 64
Higher level requires stronger signal. Relative RF range is shortened due to this filtration according the
datasheet of the TR module, Table 3. RSSI offset is 32, e.g. level 16 means a signal with RSSI > 48.

Return value • 0: Signal with specified level or higher not detected
RSSI < RSSI_FILTER, with respect to possible DQI

• 1: Signal with specified level or higher detected
RSSI > RSSI_FILTER, with respect to possible DQI

Output values Signal strength is also available as a relative value in the ADRESH (one of PIC SFR registers). Higher
value means stronger signal.

Preconditions • This function is intended for STD and RFIM receive modes but not for LP and XLP.
• If DQI enabled PORTA.6 = 1 must be set before every checkRF usage. See Example 4.

Remarks • Higher level means lower sensitivity which requires stronger signal resulting in higher immunity
against interefrences but allows lower range – see TR datasheet, table Relative RF range vs. level.

• Checking takes 1.4 ms or ~690 μs if RX chain is on (bit S = 1 in setRFmode)
• Checking consumes ~9.5 mA.
• This function is intended for fast response and power consumption reduction in STD RX mode.

Side effects A/D converter control registers are changed

See also setRFmode, RFRXpacket
Example1 // Fast response receiving in STD mode

if (checkRF(5)) // Detect signal with RSSI > 37
{
 if (RFRXpacket()) // Duration according to toutRF only if packet is sent.
 { // toutRF can be optimized for expected packet length.
 ...
 }
} // Otherwise only ~1 ms is spent.
... time-critical section can be placed here

Example2 if (checkRF(10)) // Detect signal with RSSI > 42
 ...

Example3 // RF signal strength analyzer
SWDTEN = 0; // disable watchdog
while (1)
 if (checkRF(3)) pulseLEDR(); // LED flash if signal level >= 3 detected

Example4 PORTA.6 = 1; // Necessary if using DQI
if (checkRF(0x85)) // Detect signal with RSSI > 37 using DQI
 ...

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 39

IQRF OS
RFTXpacket

Function Send RF packet of specified length from bufferRF.

Purpose RF transmission

Syntax void RFTXpacket()
Parameters –

Return value –

Output values –

Preconditions • Peer-to-peer topology:
• PIN = 0 (Peer-to-peer)
• DLEN = packet length in bytes (0 to 64)
• Prepare data to send in bufferRF[0] to bufferRF[DLEN - 1] (if DLEN ≠ 0)
• Set RF output power via setTXpower

• IQMESH:
• PIN = 0x80 (IQMESH)
• Other network related parameters should also be specified

See IQRF OS User's guide [1] and IQMESH specification [4].

Remarks • Unlike SPI, RF communication does not run on OS background. This function is active on foreground
until the packet is sent.

• Duration depends on TR type, routing algorithm, packet length and timeslot.
• See examples E01–TX, E03–TR, E09–LINK [10] and E11–IQMESH-C [10].

Side effects • bufferRF[DLEN] and bufferRF[DLEN+1] are destroyed
• System tick timing is slightly affected.
• The RF circuitry wakes up (in case of sleeping).

See also RFRXpacket, setTXpower, setRFmode and (in case of IQMESH) also other RF functions

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 40

IQRF OS

Example1 // Peer-to-peer topology
PIN=0; // Peer-to-peer (update also after every RFRXpacket

 // before every RFTXpacket)
setNonetMode();
bufferRF[0] = "I"; // Data to send
bufferRF[1] = "Q";
DLEN = 2; // 2 B packet
RFTXpacket(); // Send the packet to all Peer-to-peer Nodes in range

 // and to all IQMESH Nodes having set filtering off
 // Program stays here until the packet is sent

 ... // and then continues
Example2 // IQMESH without routing, packet from Coordinator to Node #10

PIN = 0; // PIN preclearing (update also after every RFRXpacket
 // before every RFTXpacket)

setCoordinatorMode(); // The NTWF flag (PIN.7) is set here.
bufferRF[0] = "I"; // Data to send
bufferRF[1] = "Q";
DLEN = 2; // 2 B packet
RX = 10; // Packet for Node #10
// _ROUTEF = 0; // Routing disabled - not necessary (default by OS)
RFTXpacket(); // Send the packet to IQMESH Node #10 in this network

 // Reception depends on the Node (its current network
 // or filtering)

Example3 // IQMESH with routing
 // Packet from Coordinator to Node #10
PIN = 0; // PIN preclearing (update also after every RFRXpacket

 // before every RFTXpacket)
setCoordinatorMode(); // The NTWF flag (PIN.7) is set here.
bufferRF[0] = "I"; // Data to send
bufferRF[1] = "Q";
DLEN = 5; // 5 B packet
RX = 10; // Packet for Node #10
_ROUTEF = 1; // Routing enabled for outgoing packets
RTDEF = 1; // SFM (Static Full MESH)
// RTDEF = 2; // DFM (Discovered Full MESH)
RTDT0 = 10; // 10 hops
// RTDT0 = eeReadByte[0]; // # hops = # bonded nodes

RTDT1 = 2; // Time slot = 2 ticks (20 ms is enough for DLEN=5)
RFTXpacket(); // Send the packet to IQMESH Node #10 in this network

 // Reception depends on the Node (its current network
 // or filtering)

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 41

IQRF OS
RFRXpacket

Function Receive RF packet to bufferRF and provide related information

Purpose RF receiving

Syntax bit RFRXpacket()
Parameters –

Return value • 1 – packet received
• 0 – packet not received

Output values • lastRSSI – the RSSI value after successful receipt (single sample). Quiet level (noise) is 25 - 28.
• DLEN = packet length. This variable is destroyed if the receipt is not successful.
• PIN is updated according to packet received. This variable is destroyed if the receipt is not successful.
• _NTWPACKET: valid if RFRXpacket return value == 1 only:

• 1 – networking packet received
• 0 – non-networking packet received

• Other related networking information in case of IQMESH.

Preconditions • Timeout should be specified in toutRF (1 to 255) in number of 10 ms ticks or for LP and XLP modes
in cycles, see IQRF OS User's guide, RF RX and TX modes).

• Peer-to-peer topology: nothing else
• IQMESH: network related parameters (filtering, ...) should be predefined
See IQRF OS User's guide [1] and IQMESH specification [4].

Remarks • Unlike SPI, RF communication does not run on OS background. This function is active on foreground
until the packet is received or timeout expired. Timeout during packet receiving terminates the
reception except of the Wait packet end mode – see setRFmode.

• If the packet is sent when the addresse (or a routing device) is not executing this function the packet is
lost.

• Peer-to-peer topology: All non-networking packets in range are received.
• IQMESH: Device receives only packets intended for it and non-networking packets depending on

filtering mode – see setNetworkFilteringOn and setNetworkFilteringOff.
• See examples E02–RX, E03–TR, E09–LINK and E11-IQMESH-N [10].

Side effects • Update PIN before every RFTXpacket followed after RFRXpacket.
• Result of captureTicks is destroyed if startCapture is active on background at the same time.
• System tick timing is slightly affected.
• bufferRF[DLEN] and bufferRF[DLEN+1] is destroyed.
• The RF circuitry wakes up (in case of sleeping).
• If a packet received the A/D converter control registers are changed.

See also RFTXpacket, setRFmode, checkRF and (in case of IQMESH) also other RF functions

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 42

IQRF OS

Example 1 // Peer-to-peer topology
toutRF = 10; // RF timeout 100 ms
if RFRXpacket(); // Try to receive RF packet.

 // Program stays here until the packet is received
 // or the timeout is expired. Packet received?

{ // Yes:
 copyBufferRF2INFO(); // Store received data
 PacketLength = DLEN; // and possibly other info (packet length, ...)
}
else
{ // No:
 ... // Timeout expired. Arrange respective operations.
}

Example 2 IQMESH: See setNodeMode and setNetworkFilteringOn.

Example 3 if (RFRXpacket())
{
 if (_ROUTEF) // Was the packet routed?
 { // Yes - wait for finish of routing
 while (RTDT0) // RTDT0 - rest of hops
 {
 waitDelay(RTDT1); // RTDT1 - timeslot
 RTDT0--; // Do not answer until all hops are finished
 }
 }
 ... // Now the Node is allowed to answer
}

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 43

IQRF OS
Networking

setCoordinatorMode

Function Set Coordinator mode

Purpose Assign the TR module as a network Coordinator

Syntax void setCoordinatorMode()
Parameters –

Return value –

Output values • Flag _networkingMode (userInterface.7) = 1
• Flag _networkTwo (userInterface.6) = 0
• In Coordinator mode the _NTWF flag (PIN.7) is automatically set before calling RFTXpacket

Preconditions For IQMESH only

Remarks Every TR module can work as a Coordinator or a Node. Just one Coordinator in single network is
allowed. Avoid dynamic switching the Coordinator from device to device in a network.
This settings affects both RFRXpacket and RFTXpacket.

Side effects –

See also setNodeMode, setNonetMode, RFTXpacket
Example

setNodeMode

Function Set Node mode

Purpose Assign the TR module as a network Node

Syntax void setNodeMode()
Parameters –

Return value –

Output values • Flag _networkingMode (userInterface.7) = 1
• Flag _networkTwo (userInterface.6) = 1
• In Node mode the _NTWF flag (PIN.7) is automatically set before calling RFTXpacket

Preconditions For IQMESH only

Remarks Every TR module can work as a Coordinator or a Node. This settings affects both RFRXpacket and
RFTXpacket.

Side effects –

See also setCoordinatorMode, setNonetMode, RFTXpacket
Example

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 44

IQRF OS
setNonetMode

Function Select Peer-to-peer mode

Purpose Switch from IQMESH to Peer-to-peer

Syntax void setNonetMode()
Parameters –

Return value –

Output values • Flag _networkingMode (userInterface.7) = 0
Preconditions –

Remarks • Default OS mode is Peer-to-peer.
• This settings affects RFRXpacket and RFTXpacket features.
• PIN is not affected immediately but it is cleared after subsequent RFRXpacket or RFTXpacket.
• Flag _networkTwo (userInterface.6) is not changed.

Side effects –

See also setCoordinatorMode, setNodeMode
Example setNetworkOne(); // TR communicates in IQMESH networking mode here

 ... //
setNonetMode(); // Switch to Peer-to-peer mode
 ... // Now TR communicates without networking support

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 45

IQRF OS
setNetworkFilteringOn

Function Start filtering incoming non-networking packets and packets coming from non-current network.

Purpose To receive packets from current network only.

Syntax void setNetworkFilteringOn()
Parameters –

Return value –

Output values Flag _filterCurrentNetwork in register userInterface:
 _filterCurrentNetwork: 0 – filtering off
 1 – filtering on
• This affects the RFRXpacket return value.

Preconditions For IQMESH only. Default OS condition is Filtering Off.

Remarks –

Side effects –

See also setNetworkFilteringOff, RFRXpacket
Example setNetworkFilteringOn(); // Start filtering incoming packets

RFRXpacket(); // Return value == 1 if the packet came
// from current network only.
// Return value == 0 if
// the packet came from non-current network(s)
// or it is a non-networking packet
// or no packet came in time at all.

setNetworkFilteringOff

Function Stop filtering incoming packets from the point of view the packet is coming from.

Purpose To receive all packets (non-networking packets as well as packets from all network).

Syntax void setNetworkFilteringOff()
Parameters –

Return value –

Output values • Flag _filterCurrentNetwork in register userInterface:
 _filterCurrentNetwork: 0 – filtering off
 1 – filtering on
• This affects the RFRXpacket return value.

Preconditions For IQMESH only. Default OS condition is Filtering Off.

Remarks Network 1 or 2 is automatically selected according to last received packet in this mode (except of non-
networking packets).

Side effects –

See also setNetworkFilteringOn, RFRXpacket
Example setNetworkFilteringOff(); // Stop filtering incoming packets

RFRXpacket(); // Return value == 1 if
// the packet came from current network
// or from non-current network(s)
// or it is a non-networking packet
// Return value == 0 if
// no packet came in time at all

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 46

IQRF OS
setUserAddress

Function Assign a user address to a Node

Purpose User addressing of Nodes

Syntax void setUserAddress(address)
Parameters uns16 address: user address 1 to 65 000

Return value –

Output values –

Preconditions For IQMESH Node and DFM2B only.

Remarks • 0xFFFF is intended for broadcast.
• Groups can be created by assigning the same address to more Nodes.
• See Routing algorithms in the IQRF OS user's guide for details.
• It is often convenient to set this as a part of bonding procedureby the user (to keep user program the

same for all Nodes etc.).
• Node User address is stored in EEPROM and is accessible via getNetworkParams. See Example 4.

Side effects I
t
It is not allowed to set addresses with lower byte = 0, e.g. 256 (0x01 0x00), 512 (0x02 0x00) etc. This will
be fixed in OS v4.00.

See also bondNewNode
Example 1 setUserAddress(2000); // The Node has got user address 2000
Example 2 setUserAddress(2000);

...
reset(); // User address is lost after reset
setUserAddress(2000); // User address restored

Example 3 setUserAddress(UA);
eeWriteByte(EEUA, UA) // User address stored to EEPROM

...
reset(); // User address lost after reset
setUserAddress(eeReadByte(EEUA)); // User address restored from EEPROM

Example 4 getNetworkParams(); // Get User address
uns16 myAddress = ntwUSERADDRESS; // See IQRF-memory.h

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 47

IQRF OS
getNetworkParams

Function Get network parameters

Purpose Get some information about curent system, RF and network parameters

Syntax getNetworkParams()
Parameters –

Return value –

Output values • param2: Address of current device in network (0 - 239). For unbonded device 0 is returned.
• bit _NTWPACKET

1 – IQMESH packet
 0 – Peer-to-peer packet

• param3: Network identification (param3.high=NID1, param3.low=NID0).
If the device is bonded NID0 and NID1 refer to Coordinator otherwise to the device itself. These
features are not guaranteed for future OS versions.

• Network parameters (registers with names beginning with the ntw prefix) are updated. See IQRF OS
User's guide, Appendix 2, table OS, RF and network parameters.

Preconditions For IQMESH only.

Remarks See example E11 - IQMESH-N [10].

Side effects –

See also amIBonded
Example if (amIBonded()) // Is the Node bonded?

{ // Yes:
 getNetworkParams(); // Get Node number
 myAddr = param2;
}

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 48

IQRF OS
Routing

setRoutingOn

Function Routing enabled

Purpose Allow the Node to route packets on background.

Syntax void setRoutingOn()
Parameters –

Return value –

Output values • Flag _disableRouting = 0
• This state is stored in EEPROM and initialized after reset.

Preconditions For IQMESH Nodes only.

Remarks • Routing must be enabled for a Node to be assigned to the routing backbone during Discovery.
• Routing can be enabled in all receive modes (STD, LP, XLP and RFIM).
• Flag _disableRouting in register _ntwCFG is available read only after calling
getNetworkParams:
 _disabledRouting: 0 – Routing on

 1 – Routing off

Side effects –

See also setRoutingOff, discovery, isDiscovederedNode, wasRouted
Example –

setRoutingOff

Function Routing disabled

Purpose Forbid the Node to route packets on background.

Syntax void setRoutingOff()
Parameters –

Return value –

Output values • Flag _disableRouting = 1
• This state is stored in EEPROM and initialized after reset.

Preconditions For IQMESH Nodes only.

Remarks • If routing is disabled the Node will not be assigned to the routing backbone during Discovery.
• Flag _disableRouting in register _ntwCFG is available read only after calling
getNetworkParams:
 _disabledRouting: 0 – Routing on

 1 – Routing off

Side effects –

See also setRoutingOn, discovery, isDiscovederedNode, wasRouted
Example –

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 49

IQRF OS
discovery

Function Discover Nodes for routing and asign VRN (Virtual Routing Number) to individual Nodes

Purpose Routing backbone creation (for routing transparent from the user's point of view)

Syntax uns8 discovery(zones)
Parameters uns8: zones: max. number of zones to be established

Return value Number of discovered Nodes (≤ number of Nodes which should route)

Output values • Routing backbone is stored in EEPROM

Preconditions • For IQMESH Coordinator only.
• Nodes must be in the answerSystemPacket loop routine during Discovery.

Remarks • Nodes in current network only are discovered.
• Discovery should be invoked after every change in network topology.
• Nodes use the TX output power currently set in Coordinator during the discovery process.
• It is recommended to run discovery under stronger conditions than ones that will be used in normal

communication. It should be achieved by lower RF power or by filtering of incoming RF signal
(checkRF). Filtering should be preferred due to better signal-to-noise ratio. See example E11-
IQMESH-N [10], function answerSystempacket.

• See example E11-IQMESH-C [10].
• See IQRF OS User's guide, routing algorithms.

Side effects • Watchdog is disabled during this operation and enabled after finishing.
• All OS buffers (bufferINFO, bufferCOM, bufferRF and bufferAUX) are destroyed
• toutRF variable is changed
• _STAY_RX flag is set. See setRFmode.
• A/D converter control registers are changed

See also setRoutingOn, setRoutingOff, isDiscovederedNode, bondNewNode, answerSystemPacket
Example1 setTXpower(DISCOVERY_POWER); // Set RF power for discovery

nodes = discovery(10); // Limit to max. 10 hops
SWDTEN = 0; // Possibly restore WDT

Example2 nodes = discovery(eeReadByte(0x00)); // Limit to number of bonded Nodes
 // e.g. for Chain MESH

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 50

IQRF OS
answerSystemPacket

Function Enable response to Coordinator for Discovery

Purpose Discovery support from the Node's side

Syntax void answerSystemPacket()
Parameters –

Return value –

Output values Routing information exchanged between Coordinator and the Node via system packets.

Preconditions • For IQMESH Node only.
• Nodes must be in the answerSystemPacket loop routine when Discovery is running.
• WDT should be disabled before answerSystemPacket

Remarks • Nodes use the TX output power currently set in Coordinator for discovery.
• It is recommended to run discovery under stronger conditions than ones that will be used in normal

communication. It should be achieved by lower RF power or by filtering of incoming RF signal
(checkRF). Filtering should be preferred due to better signal-to-noise ratio. See the example below
and example E11-IQMESH-N [10].

Side effects • toutRF is changed after Discovery
• TX power can be affected during discovery

See also setRoutingOn, setRoutingOff, isDiscovederedNode, discovery
Example toutRF = MY_TOUT_RF;

if (RFRXpacket())
{
 …
}
else
{
 if (lastRSSI > discovery_threshold) // discovery_threshold is a user

 // constant to ensure stronger
 // conditions – see Remarks.

 {
 SWDTEN = 0;
 answerSystemPacket(); // to be discovered
 SWDTEN = 1;
 setTXpower(MY_POWER);
 }
}

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 51

IQRF OS
isDiscoveredNode

Function Check for being discovered

Purpose Ask whether the Node has been discovered

Syntax bit isDiscoveredNode(address)
Parameters uns8: address: Node address

Return value • true: Specified Node has been discovered
• false: Specified Node has not been discovered

Output values –

Preconditions For IQMESH Coordinator only.

Remarks See E11-IQMESH-C [10].

Side effects –

See also discovery, answerSystemPacket, optimizeHops
Example DiscoveredNodes = discovery(3); // Discovery (up to 3 zones)

if (DiscoveredNodes < BondedNodes) // (BondedNodes and DiscoveredNodes
// are user variables)

{ // There are some bonded but not discovered Nodes
 if (isDiscoveredNode(1)) // Is the Node 1 discovered?
 …
}
else
{ // All bonded Nodes discovered
 …
}

wasRouted

Function Indicate incoming packet routing

Purpose To distinguish whether incoming packet has been routed for other recipient(s).

Syntax bit wasRouted()
Parameters –

Return value • true packet has been routed
• false packet has not been routed

Output values –

Preconditions For IQMESH Nodes only.

Remarks Addressees route broadcast packets only. See E11-IQMESH-N [10].

Side effects –

See also setRoutingOn, setRoutingOff, discovery, isDiscovederedNode
Example if (RFRXpacket())

{
 if (wasRouted())
 pulseLEDG(); // indicate routing received packet for broadcast
 …
}
else
{
 if (wasRouted())
 pulseLEDG(); // indicate routing incoming packet for another addressee
}

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 52

IQRF OS
optimizeHops

Function Optimize number of hops for given Node

Purpose Set optimized number of hops according to a topology, without flooding

Syntax void optimizeHops(x)
Parameters uns8 x: optimizing method

• 0xFF DOM – Discovered optimized MESH: sets RTDT0 to VRN of addressed Node
• 0x00 DRM – Discovered reduced MESH: sets RTDT0 to VRN of the first Node in the zone of the

addressed Node. Not implemented yet.

Return value –

Output values RTDT0 (number of hops) is set

Preconditions • For IQMESH Coordinator and DFM routing algorithm only.
• Intended to be called before sending a packet from Coordinator.
• Node address must be set before (RX = …).
• The Node must be discovered.

Remarks See E11-IQMESH-C [10] and IQRF OS User's guide.

Side effects –

See also discovery, isDiscovederedNode
Example setCoordinatorMode();

RX = MY_NODE;
RTDT0 = eeReadByte(0x00); // Hops according to a number of bonded Nodes
 if (isDiscoveredNode(RX)) // For routing using Discovery only
 optimizeHops(0xFF); // Modifies RTDT0 (number of hops)
 .
 .
 .
RFTXpacket();

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 53

IQRF OS
Bonding – Node only

bondRequest

Function Ask Coordinator via RF for bonding to its network. Bond the Node in cooperation with Coordinator and
record it to EEPROM.

Purpose Request by the Node to be included to the network on both Coordinator's and Node's sides.

Syntax bit bondRequest()
Parameters –

Return value • 1 – Node has been bonded
• 0 – Node has not been bonded

Output values • The amIBonded function starts to return value == 1 whenever is called while the Node is bonded by
bondRequest not beeing unbonded by removeBond or wipeBondNR.

• Coordinator is not affected at all.
• param2: Node address (if successfully bonded only). Not guarranted for future OS versions.

Preconditions For IQMESH only.

Remarks • Bonding is a mutual relationship between Coordinator and Node. Coordinator assigns a Node number
(1 to 239 or 0xEF) to the Node which serves as Node address within the network. (Coordinator itself
has the address 0.) Bonding accomplishes via exchanging system RF packets and results are stored
in system part of internal EEPROMs.The user can access results and change them via other functions
related to bonding. See example E11 - IQMESH-N, E11 - IQMESH-C [10]. This function is active until
successfully finished or fixed 10 s timeout expired. RF power is not affected.

Side effects • DLEN, PIN, toutRF, bufferRF and bufferINFO are modified
• Result of captureTicks is destroyed if startCapture is active on background at the same time.
• Watchdog is disabled during this operation and enabled after finishing
• IQMESH mode must be restored by setNodeMode after bondRequest
• A/D converter control registers are modified

See also bondNewNode, amIBonded, removeBond, rebondNode, getNetworkParams, setNodeMode
Example1 pulsingLED(); // LED blinking indicates attempt to bond (max. 10 s)

if (bondRequest())
{ // if successfully bonded
 stopLED();
 _RLED=1; // LED On
 waitDelay(100); // for 1 s
}
setNodeMode(); // Restore
stopLED();

Example2 See amIBonded

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 54

IQRF OS
amIBonded

Function Is the Node bonded?

Purpose Test whether the Node is bonded on Node's side

Syntax bit amIBonded()
Parameters –

Return value • 1 – Node is bonded (after bondRequest not beeing unbonded by removeBond)
• 0 – Node is not bonded:

• no bondRequest has ever been successfully executed
• after removeBond

Output values –

Preconditions For IQMESH only. Result is not depended on the Coordinator at all.

Remarks See example E11 - IQMESH-N [10].

Side effects –

See also bondRequest, removeBond
Example while (!amIBonded()) // Request for beeing bonded (if not bonded yet)

{
 bondRequest(); // Repeatedly try to bond
 clrwdt();
} // until successful

removeBond

Function Remove the Node from the network and record it to EEPROM.

Purpose Exclude the Node from the network on Node's side and keep its Node number reserved for possible
future rebonding.

Syntax void removeBond()
Parameters –

Return value –

Output values • The amIBonded function starts to return value == 0 whenever is called until the Node is bonded
again via bondRequest.

• Just this value is affected but the Node keeps the Node number still stored (for possible future
rebonding with the same Node number).

• Coordinator is not affected at all.

Preconditions For IQMESH only.

Remarks • See example E11 - IQMESH-N [10].
• For rebonding use bondRequest again.
• removeBond relates to Node only and removeBondedNode and rebondNode relate to Coordinator

only. The other side is not informed by OS about changes made by these functions. If synchronization
is needed it should be done by the application.

Side effects –

See also bondRequest, bondNewNode, amIBonded, rebondNode
Example removeBond(); // Remove the bond.

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 55

IQRF OS
Bonding – Coordinator only

bondNewNode

Function Look for bond requesting devices and bond a new Node by Coordinator on a Node's request via RF.
Allocate the Node number and assign the Network number and send both to Node via RF. If successful,
the Node is bonded to the network on both Coordinator's and Node's sides and is included to the list of
bonded Nodes provided by Coordinator in EEPROM.

Purpose Include a new Node to the network

Syntax bit bondNewNode(address)
Parameters uns8: address

• 1 to 239 Assign requested address to the Node. This must be unique in the whole network. If an
existing number is used the Node is not bonded and the function immediately returns 0.
Only these Nodes can be a part of routing backbone.

• 0 The first free address is assigned (like the only way in IQRF OS v2.xx). It equals to a
number of bonded nodes + 1. It assumes a continuous block of addresses and
possible vacations are ignored. Thus, this way is suitable for the initial bonding without
discontinuities.

• 0xFE The universal address. Nodes with this address are included in the network but outside
the routing backbone (not being discovered). Particular address can be assigned by
setUserAddress. It is intended especially for networks with more than 239 Nodes.

Return value • 1 – bonding successful, Node included to the list of bonded Nodes
• 0 – bonding unsuccessful, Node not included to the list of bonded Nodes

Output values • param2: Node number
• bufferRF[0 to 1]: two lower ID bytes of the Node (is successfully bonded), LSB in bufferRF[0].
• The isBondedNode function starts to return value == 1 whenever is called while the Node is in the list

of bonded Nodes.

Preconditions • For IQMESH Coordinator only.
• Coordinator accomplishes bonding on request from Node via RF. When this function is executing the
bondRequest function must just be active in the Node.

Remarks • See example E11 - IQMESH-C [10] and IQRF OS User's guide – routing algorithms.
• If no requesting Node is detected during 10 s period this function terminates.
• Network number is derived from Coordinator ID which ensures unique identification of various

networks.
• RF power is not affected.
• An occupied address can be unblocked by removeBondedNode(address).

Side effects The following values are modified and not restored:
• PIN, DLEN, toutRF, bufferRF and bufferINFO are modified
• Result of captureTicks is destroyed if startCapture is active on background at the same time.
• Watchdog is disabled during this operation and enabled after finishing
• IQMESH mode must be restored by setCoordinatorMode after bondNewNode
• A/D converter control registers are modified

See also bondRequest, removeBondedNode, rebondNode, isBondedNode, setUserAddress,
setCoordinatorMode

Example if (bondNewNode()) // Bonding successful ?
{ // Yes:
 NodeNumber = param2;
 ...
}
else
{ // No:
 ... // Arrange necessary steps
}
setCoordinatorMode(); // Restore

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 56

IQRF OS
isBondedNode

Function Is specified Node in the list of bonded Nodes?

Purpose Test whether the Node is bonded on Coordinator's side

Syntax bit isBondedNode(n)
Parameters uns8 n: Node number

Return value • 1 – Node is in the list of bonded Nodes
• 0 – Node is not in the list of bonded Nodes

Output values –

Preconditions For IQMESH only. The result is not affected by the Node at all.

Remarks –

Side effects –

See also bondNewNode, removeBondedNode, rebondNode, clearAllBonds
Example if isBondedNode(28) // Is Node #28 bonded ?

{ // Yes:
 ... // Coordinator assumes Node #28 to be bonded
}
else
{ // No:
 ... // Coordinator assumes Node #28 not to be bonded
}

removeBondedNode

Function Remove a Node from the list of bonded Nodes by Coordinator in EEPROM

Purpose Exclude the Node from the network on Coordinator's side

Syntax void removeBondedNode(n)
Parameters uns8 n: Node number

Return value –

Output values The isBondedNode function starts to return value == 0 whenever is called while the Node is not in the
list of bonded Nodes. The Node is not affected at all.

Preconditions For IQMESH only

Remarks removeBondedNode and rebondNode relate to Coordinator only and removeBond relates to Node
only. The other side is not informed by OS about changes made by these functions. If synchronization is
needed it should be done by the application.

Side effects –

See also bondNewNode, isBondedNode, clearAllBonds, removeBond
Example removeBondedNode(28); // Coordinator assumes Node #28 to be

// out of the network from now on

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 57

IQRF OS
rebondNode

Function Put a Node back to the list of bonded Nodes by Coordinator in EEPROM

Purpose Include the Node to the network again on Coordinator's side

Syntax bit rebondNode(n)
Parameters uns8 n: Node number

Return value reserved for future OS versions

Output values The isBondedNode function starts to return value == 1 whenever is called while the Node is in the list
of bonded Nodes. The Node is not affected at all.

Preconditions For IQMESH only. Avoid rebonding a Node not beeing bonded ever before.

Remarks removeBondedNode and rebondNode relate to Coordinator only and removeBond relates to Node
only. The other side is not informed by OS about changes made by these functions. If synchronization is
needed it should be done by the application.

Side effects –

See also bondNewNode, removeBondedNode, isBondedNode
Example rebondNode(28); // Coordinator assumes Node #28 to be

// back in the network from now on

clearAllBonds

Function Remove all Nodes from the list of bonded Nodes by Coordinator in EEPROM

Purpose Excluding all Nodes from the network on Coordinator's side

Syntax void clearAllBonds()
Parameters –

Return value –

Output values The isBondedNode function starts to return value == 0 whenever is called while the Node is not in the
list of bonded Nodes. Nodes are not affected at all.

Preconditions For IQMESH only

Remarks • See example E11 - IQMESH-C [10].
• After subsequent bondNewNode(0) the Coordinator will start to assign Node numbers from 0.

Side effects bufferINFO modified

See also removeBondedNode
Example clearAllBonds(); // Exclude all currently bonded nodes from the network

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 58

IQRF OS
RFPGM – wireless upload

enableRFPGM

Function Request to configure OS for switching to RFPGM mode after TR module reset

Purpose Enable switching to RFPGM mode after reset

Syntax void enableRFPGM()
Parameters –

Return value –

Output values OS configured

Preconditions –

Remarks This function must be executed first to modify OS and just the following reset will switch to RFPGM.

Side effects –

See also disableRFPGM, runRFPGM, setupRFPGM
Example See disableRFPGM

disableRFPGM

Function Request to configure OS for not switching to RFPGM mode after TR module reset

Purpose Disable switching to RFPGM mode after reset

Syntax void disableRFPGM()
Parameters –

Return value –

Output values OS configured

Preconditions –

Remarks This function must be executed first to modify OS and just the following reset will not switch to RFPGM.

Side effects –

See also enableRFPGM, setupRFPGM
Example enableRFPGM(); // During development

// disableRFPGM(); // For final application

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 59

IQRF OS
runRFPGM

Function Switch to RFPGM mode

Purpose One-shot immediate switching to RFPGM mode

Syntax void runRFPGM()
Parameters –

Return value –

Output values RFPGM mode initiated

Preconditions • Parameters like RF band, RF channel and bit rate are fixed to OS default values in the Lite version. If
the application uses different ones, they must be set to default before using runRFPGM and then (just
for the case of RFPGM refusal) restored to desired values.

• Non-networking and STD modes must be selected

Remarks • RFPGM mode can be refused by low level on the C5 pin for at least ~0.7 s (if enabled) or by the End
RFPGM button in IQRF IDE (unconditionally). Then the application continues without reset.

• After successful RFPGM finishing the application is reset.

Side effects toutRF is modified if RFPGM did not take place.

See also enableRFPGM, setupRFPGM
Example 1 if (jumperSet) runRFPGM(); // Enter RFPGM mode on special request
Example 2 setNonetMode(); // Disable networking (if enabled)

setRFmode(0); // Default mode (if a different one is used)
setRFchannel(52); // If a different channel is used

// default (52 for 868 MHz or 104 for 916 MHz)
runRFPGM();
setNodeMode(); // or CoordinatorMode(); (restoring)
setRFchannel(my_channel); // channel restoring
setRFmode(my_mode); // mode restoring

Example 3 setNonetMode();
setRFmode(0);
setRFchannel(52);
runRFPGM();
reset(); // Reset (for continuing without RFPGM only)

// Restoring is not necessary here

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 60

IQRF OS
setupRFPGM

Function Setup RFPGM parameters

Purpose Configure behavior for RFPGM invoking and termination

Syntax void setupRFPGM(x)
Parameters uns8 x: Factory default: 0x80

bit 7 6 5 4 3 2 1 0

RFPGM termination
by MCU pin(s)

RFPGM termination
~1 min after reset

0 RFPGM
enable

0 0 0 0

bit 4: RFPGM invoking by reset. H – enabled, L – disabled (default). This bit operates like
 enableRFPGM / disableRFPGM functions.

bit 6: RFPGM termination automatically ~1 minute after reset. H – enabled, L – disabled (default)
bit 7: RFPGM termination by MCU pins RA5 or RB4. H – enabled (default), L – disabled.

• C5 for TR modules in SIM format, e.g. TR-52D
• Q11 or Q12 for TR-54D

Return value –

Output values OS is modified and setup values are applicable anytime later.

Preconditions –

Remarks RFPGM invoking by runRFPGM() is unconditional, independent on parameter x
RFPGM termination by IQRF IDE is unconditional, independent on parameter x

Side effects –

See also runRFPGM, enableRFPGM
Example 1 setupRFPGM(0x10); // RFPGM entered: after reset or runRFPGM

// RFPGM abandoned: by End RFPGM button only
Example 2 setupRFPGM(0x90); // RFPGM entered: after reset or runRFPGM

// RFPGM abandoned: by C5 pin or End RF PGM button only
Example 3 setupRFPGM(0xD0); // RFPGM entered: after reset or runRFPGM

 // RFPGM abandoned: by C5 pin or End RFPGM button or
 automatically ~1 min after reset

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 61

IQRF OS
Documentation and Information
1 IQRF OS User's guide www.iqrf.org/weben/downloads.php?id=155
2 RAM map and EEPROM map, IQRF OS User's guide, Appendix 1 [1]
3 IQRF website www.iqrf.org
4 IQMESH specification www.iqmesh.org/iqmesh
5 SPI specification www.iqrf.org/weben/downloads.php?id=85
6 IQRF support support@iqrf.org
7 TR-52D datasheet www.iqrf.org/213

TR-54D datasheet www.iqrf.org/220
8 PIC16LF1938 datasheet: www.iqrf.org/214
9 IQRF IDE: www.iqrf.org/weben/downloads.php?id=86
10 Examples (included in the StartUp Package): www.iqrf.org/weben/downloads.php?id=112

If you need a help or more information please contact IQRF support [6]. A lot of information is also available in the IQRF OS
User's guide [1] and on the IQRF home page [3].

Document revision
• 120810 SPI description precised (64 B packets), setRFmode enhanced, calibrateTimer obsolete, some minor

improvements, side effects updated.
• 120425 Chapter Documentation and Information revised. Preliminary.
• 120403 checkRF Remarks changed. Preliminary.
• 120322 Preliminary release,for TR-5xD with OS v3.01D. Side effects are not updated.

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 62

http://www.iqrf.org/weben/downloads.php?id=155
http://www.iqrf.org/weben/downloads.php?id=112
http://www.iqrf.org/weben/downloads.php?id=86
http://www.iqrf.org/weben/downloads.php?id=214
http://www.iqrf.org/weben/downloads.php?id=220
http://www.iqrf.org/weben/downloads.php?id=213
mailto:support@iqrf.org
http://www.iqrf.org/weben/downloads.php?id=85
http://www.iqmesh.org/iqmesh
http://www.iqrf.org/

IQRF OS
Index
amIBonded...55
answerSystemPacket...51
appInfo..31
bondNewNode..56
bondRequest..54
calibrateTimer...4
captureTicks...12
checkRF...39
clearAllBonds..58
clearBufferINFO..28
clearBufferRF...28
compareBufferINFO2RF..27
copyBufferCOM2INFO...26
copyBufferCOM2RF...26
copyBufferINFO2COM...24
copyBufferINFO2RF...24
copyBufferRF2COM...25
copyBufferRF2INFO...25
copyMemoryBlock..29
debug..7
disableRFPGM...59
disableSPI..32
discovery..50
eeeReadData...21
eeeWriteData..21
eeReadByte..19
eeReadData...19
eeWriteByte..20
eeWriteData..20
enableRFPGM..59
enableSPI...32
getNetworkParams...48
getStatusSPI...35
getSupplyVoltage...8
getTemperature..9
iqrfSleep...5
isBondedNode..57
isDelay..14
isDiscoveredNode..52
moduleInfo..30
optimizeHops..53
pulseLEDG...18

pulseLEDR...16
pulsingLEDG..17
pulsingLEDR...16
readFromRAM..22
rebondNode..58
removeBond...55
removeBondedNode..57
restartSPI..34
RFRXpacket...42
RFTXpacket..40
runRFPGM...60
setCoordinatorMode...44
setNetworkFilteringOff..46
setNetworkFilteringOn..46
setNodeMode...44
setNonetMode..45
setOffPulsingLED...15
setOnPulsingLED...15
setRFband..37
setRFchannel...37
setRFmode...38
setRFready...6
setRFsleep...6
setRFspeed..36
setRoutingOff..49
setRoutingOn..49
setTXpower..36
setupRFPGM..61
setUserAddress..47
startCapture..11
startDelay...13
startLongDelay...13
startSPI...33
stopLEDG...18
stopLEDR...17
stopSPI...34
swapBufferINFO...27
waitDelay..10
waitMS..10
waitNewTick..11
wasRouted..52
writeToRAM..23

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 63

IQRF OS

Sales and Service

Corporate office

MICRORISC s.r.o., Delnicka 222, 506 01 Jicin, Czech Republic, EU
Tel: +420 493 538 125, Fax: +420 493 538 126, www.microrisc.com

Partners and distribution

please visit www.iqrf.org/partners

Quality management
ISO 9001 : 2009 certified

Trademarks
The IQRF name and logo are registered trademarks of MICRORISC s.r.o.
PIC, SPI, Microchip, RFM and all other trademarks mentioned herein are property of their respective owners.

Legal
All information contained in this publication is intended through suggestion only and may be superseded by updates
without prior notice. No representation or warranty is given and no liability is assumed by MICRORISC s.r.o. with respect to
the accuracy or use of such information.

Without written permission it is not allowed to copy or reproduce this information, even partially.

No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

The IQRF products utilize several patents (CZ, EU, US)

Website www.iqrf.org
E-mail sales@iqrf.org
On-line support support@iqrf.org

© 2012 MICRORISC s.r.o. www.iqrf.org RGIQRFOS300D_120810 Page 64

http://iq-esupport.com/
http://iq-esupport.com/
http://www.microrisc.com/
http://www.microrisc.com/

	Quick reference
	Functions

	OS functions
	Control
	calibrateTimer
	iqrfSleep
	setRFsleep
	setRFready
	debug
	getSupplyVoltage
	getTemperature

	Active waiting
	waitMS
	waitDelay
	waitNewTick

	Timing on background
	startCapture
	captureTicks
	startDelay
	startLongDelay
	isDelay

	LED indication
	setOnPulsingLED
	setOffPulsingLED
	pulsingLEDR
	pulseLEDR
	stopLEDR
	pulsingLEDG
	pulseLEDG
	stopLEDG

	MCU EEPROM
	eeReadByte
	eeReadData
	eeWriteByte
	eeWriteData

	Serial EEPROM
	eeeReadData
	eeeWriteData

	RAM
	readFromRAM
	writeToRAM

	Buffers
	copyBufferINFO2COM
	copyBufferINFO2RF
	copyBufferRF2COM
	copyBufferRF2INFO
	copyBufferCOM2RF
	copyBufferCOM2INFO
	compareBufferINFO2RF
	swapBufferINFO
	clearBufferINFO
	clearBufferRF

	Data blocks
	copyMemoryBlock
	moduleInfo
	appInfo

	SPI
	enableSPI
	disableSPI
	startSPI
	stopSPI
	restartSPI
	getStatusSPI

	RF
	setTXpower
	setRFspeed
	setRFband
	setRFchannel
	setRFmode
	checkRF
	RFTXpacket
	RFRXpacket

	Networking
	setCoordinatorMode
	setNodeMode
	setNonetMode
	setNetworkFilteringOn
	setNetworkFilteringOff
	setUserAddress
	getNetworkParams

	Routing
	setRoutingOn
	setRoutingOff
	discovery
	answerSystemPacket
	isDiscoveredNode
	wasRouted
	optimizeHops

	Bonding – Node only
	bondRequest
	amIBonded
	removeBond

	Bonding – Coordinator only
	bondNewNode
	isBondedNode
	removeBondedNode
	rebondNode
	clearAllBonds

	RFPGM – wireless upload
	enableRFPGM
	disableRFPGM
	runRFPGM
	setupRFPGM

	Documentation and Information
	Document revision

