
IQRF OS
Operating System

Version 3.00
for TR-52B and TR-53B

User's Guide

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_110112 Page 1



IQRF OS
Content

IQRF platform..........................................................................................................................................................................3
Compatibility............................................................................................................................................................................3
IQRF OS versions and history.................................................................................................................................................4
OS Principles...........................................................................................................................................................................4
Concept of OS plug-ins...........................................................................................................................................................5
IQRF OS Architecture .............................................................................................................................................................6
RF circuitry..............................................................................................................................................................................7
Microcontroller.........................................................................................................................................................................7
Memories.................................................................................................................................................................................8

Program memory (Flash)....................................................................................................................................................8
Data memory (RAM)..........................................................................................................................................................8
Data memory (EEPROM)...................................................................................................................................................9
Identification.......................................................................................................................................................................9

Module data...................................................................................................................................................................9
Application data.............................................................................................................................................................9

Control...................................................................................................................................................................................10
Operation modes..............................................................................................................................................................10
Real time..........................................................................................................................................................................10
Watchdog.........................................................................................................................................................................10
TR module Sleep..............................................................................................................................................................10
RF Sleep..........................................................................................................................................................................11
RX chain...........................................................................................................................................................................11
Other PIC peripherals.......................................................................................................................................................11
Reset................................................................................................................................................................................11
Temperature measurement..............................................................................................................................................12
Battery check....................................................................................................................................................................12
LED indication..................................................................................................................................................................12
Debug...............................................................................................................................................................................12

SPI.........................................................................................................................................................................................12
RF..........................................................................................................................................................................................13

RF overview.....................................................................................................................................................................13
RF networking..................................................................................................................................................................14
RF transmitting.................................................................................................................................................................15
RF receiving.....................................................................................................................................................................15
Filtering.............................................................................................................................................................................17
Routing.............................................................................................................................................................................17
Bonding............................................................................................................................................................................18

Appendix 1............................................................................................................................................................................19
EEPROM map..................................................................................................................................................................19
RAM map (PIC16F886)....................................................................................................................................................20

Appendix 2............................................................................................................................................................................21
868 MHz band channel map.............................................................................................................................................21
916 MHz band channel map.............................................................................................................................................22

Documentation and Information............................................................................................................................................23
Document revision.................................................................................................................................................................24
Sales and Service..................................................................................................................................................................25

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 2



IQRF OS
IQRF platform

IQRF is a wireless license free platform for ISM bands (868 and 916 MHz). Compact transceiver module (TR) has built-in 
operating system (OS) and is fully user programmable in C language using powerful OS functions including RF (wireless) 
as well as SPI (4-wire serial) communication and complex IQMESH networking support. No link layer is provided, the entire 
functionality is fully up to user application. 

Compatibility
TR module current OS modulation

TR–11A
v2.08

ASK

TR–21A v1.02 and v1.03 ASK

TR–31B
v2.10 for 3xB

ASK

TR–32B ASK

TR–52B
v3.00

FSK

TR–53B FSK

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 3

Communication is possible among TR modules with the same 
type of modulation only. OS v3.00 is compatible with 2.11 in 
STD mode only.

The modules are delivered with IQRF OS allowing realization of 
common  networking  device  (Node)  as  well  as  network 
Coordinator  (software  selectable),  both  able  to  work 
additionally  also  as  a  router  on  background  (see  RF 
networking).

IQRF  transceiver  modules  allow  upgrades to  current  OS 
version. This service must be done by the manufacturer.



IQRF OS
IQRF OS versions and history

Version Main differences Release Status

v3.00 for 5xB

• Up to 65 000 devices and up to 240 hops in IQMESH network
• New power management, 35 uA in XLP RX
• Discovery, real time transparent routing, low power routers
• Many other outstanding features

Jan 2011 current for TR-52B
and TR-53B

v2.11 for 5xB
• RF power management supported (setRFmode, checkRF, …)
• RF channels available
• selectable RF bit rate (provisionally for experimental purpose)

Mar 2010 not for new designs
for TR-52B and TR-53B

v2.10 for 5xB

In addition to that for 3xB:
• 868 MHz or 916 MHz band software selectable
• Enhanced battery check
• RF IC sleep mode supported

Jan 2010 for TR-52B and TR-53B
not for new designs

v2.10 for 3xB

• concept of OS plug-ins
• RF power not limited during bonding
• green LED support, LED functions renamed
• User RAM limited to 0x1CF

Dec 2009 current for TR-31B
and TR-32B

v2.09 • minor change in first falling to Sleep mode
• bonding robustness increased Jul 2009 not for new designs

v2.08 • broadcast message support added Oct 2008 current for TR-11A
and TR-21A• implemented in TR-31B modules Nov 2008

v2.07
• bug in the setLoggingOff() function fixed
• Wake-up on pin change improved. To utilize it, the sequence

GIE = 0; RBIE = 1; is required just before iqrfSleep().
Sep 2008 not for new designs

v2.06 • minor change in routing Aug 2008 not for new designs

v2.05
• higher RF noise immunity
• corrected transfer of MPRWx while not routing
• several minor bugs not affecting module functionality corrected

Aug 2008 not for new designs

v2.04

• setNetworkFilteringOn() switches just packet from active network (1 
or 2), non-networking communication ignored

• Wake-up on pin change under user's control. Default disabled.
To enable, set RBIE = 1 before iqrfSleep(). Not compatible with 
previous versions (permanently enabled in Sleep up to v2.03).

Jul 2008 internal release only

v2.03
• BufferCOM size increased from 35B to 41B
• Number of nodes in one network increased from 128 to 239
• Minor bug in routing fixed

Jul 2008 not for new designs

v2.02 • minor SPI bug fixed May 2008 not for new designs

v2.01 • function wipeBondNR() added
• function batteryValueOK() added Mar 2008 not for new designs

v2.00

• Much more effective, easier to use, higher performance
• Networking totally reworked. Extended capability. Complete IQMESH.
• SPI on background
• Encoded network communication
• Indirect RAM access
• Temperature measurement supported by OS
• Supports user application debugging directly by IQRF OS
• Many other improvements
• IDE –  complete  development  environment with  all  SW  tools 

integrated including effective debug tools

Jan 2008 not for new designs

v1.14 previous generation Jul 2007 not for new designs

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 4



IQRF OS
OS Principles

The IQRF system is designed to allow using of RF wireless connection according to user’s needs. Transceiver modules 
contain microcontrollers for controlling the transceiver operations and for executing of user defined functioning.
Patented IQRF transceiver module architecture has two software layers: 

• Basic routines programmed in advance by the manufacturer. The set of such functions 
is called operating system (OS).

• Application layer utilizes routines from the basic layer to customize the module for 
user specific operation.

In opposite to Solution stack, there is no need to compile protocol related routines, just the 
application is compiled. This approach reduces time and development costs significantly 
when creating connectivity applications. 
OS offers software functions prepared in advance for all common user requirements. Thus, it is not necessary to create the 
whole user program by oneself (using microcontroller instructions and C commands only) but the user adds a user part of 
software to the OS only.
The user application so called „runs under the operating system“ which means that this is invoked from OS, uses OS 
functions and is (should be) under OS control.
OS functions need not run sequentially (next function invoked not until the preceding one is finished)  but some operations 
can run so called “in background” (the function arranges execution of requested operations which runs independently and 
immediately returns the control back to superior program). In this way more processes can run “simultaneously”. Then the 
program structure is that besides of execution running sequentially “in foreground” several tasks in background can be 
running.  IQRF  OS  allows  to  run  even  very  complex  operation  including  complete  SPI  communication  protocol  in 
background. This makes real-time programming really easy.
IQRF OS supports communications:
• RF (radio), including networks – in peer-to-peer and IQMESH topologies.
• Standard serial SPI (slave mode) interface for connection to peripherals or to PC (e.g. via CK-USB-04).
Other communications can be realized with a user program (I2C, UART, ...).
Complex standard communication interfaces (USB, Ethernet, GSM, …) can be realized using IQRF gateways.
OS supports low power consumption of IQRF transceivers with the Sleep functions when operation of TR module or RF IC 
is reduced/stopped.
To increase the reliability the watchdog function is used. This is implemented in microcontroller hardware and controlled 
via user program.

Concept of OS plug-ins
IQRF operating system can be extended via optional plug-ins.
Plug-in is a SW module delivered (typically by the IQRF manufacturer) as a file with the 
.IQRF extension. It should be uploaded to the TR module by the IQRF IDE and an IQRF 
programmer (e.g. CK-USB-04). The procedure is similar to uploading a user program. 
More plug-ins can be used at the same time.
To utilize a plug-in, corresponding header files (with the .H extension, also delivered with 
the plug-in) should be included to source program similarly to other system header files.
Example:   #include "plug-ins/PlugInXY.h"
Then all plugged-in functions are available like standard system ones.

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 5



IQRF OS
IQRF OS Architecture 

Hardware of the transceiver module with a microcontroller including the IQRF OS results in architectural model:

Individual blocks:

• Memories:
• program memory (Flash)
• data memory (RAM)
• data memory (EEPROM)

• Communication interface:
• RF (wireless)
• SPI (standard serial, 4-wire)

• Temperature sensor (TR-52B only)
• Power supply check
• Digital I/O (input/output).
• A/D converter
• Time base support: calibrated 10 ms interval (tick) generator in background and supporting functions
• 2 LEDs control in OS background
• IQMESH networking
• Debug: OS support for testing and debugging
Resources partially depend on transceiver module type.

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 6



IQRF OS
RF circuitry

Main features:
• Bands: 868 MHz / 916 MHz, SW selectable (default 868 MHz).  Default 916 MHz on request.
• Channels: Frequency channels SW selectable in accordance with the CEPT ERC/REC 70-03 General License. See 

Appendix 2.
• Bit  rate: SW  selectable  (1.2  kb/s,  19.2  kb/s,  57.6  kb/s  and  86.2  kb/s).  Default  is  19.2  kb/s,  other  bit  rates  are 

provisionally intended for experimental purposes only. Routing is tested for 19.2 kb/s only.
• RF output power: up to 3.5 mW, SW selectable in 8 steps.
• Various sleep modes to reduce overall current consumption and optimize response times.
• RF RX and TX power management modes.

Microcontroller
IQRF OS  for  TR-52B,  TR-53B  and  compatibles  is  implemented  in  the  PIC16F886  MCUs  (8-bit  microcontrollers  by 
Microchip) – datasheet see [8].
PIC hardware resources and their utilization in TR modules with OS:

PIC HW resources Utilization
Program memory Flash 1024 instructions

Data memory RAM  40  B – user data
172 B – communication/system buffers

Data memory EEPROM Node:       160  B user data + 32  B application data
Coordinator: 0  B user data + 32  B application data

I/O pins TR-52B 6 × I/O
TR-53B 7 × I/O

A/D converter (10b) 2 (TR-52B) or 3 (TR-53B) external analog inputs

Serial 
communication

SPI (slave) Supported by OS in background
I2C Realized by PIC HW module and user function – see Application examples [10]
UART Realized by PIC HW module and user function – see Application examples [10]

Interrupt Not user available. It can be disabled just for a short period if necessary.
Stack (for subroutines, shared 
with interrupt)

Max. 2 levels of subroutine calling is allowed except of  RFTXpacket() and 
RFRXpacket() (1 level allowed) and bondNewnode(), bondRequest() and 
answerSystemPacket() (must not be called in subroutines at all).

Power-on reset Utilizes HW filter to eliminate improper power-up rising and spikes to some extent. 
Brown-out reset Disabled. Can be enabled during operation and disabled in Sleep by the 

manufacturer on request.
Power-up timer Disabled
Watchdog Time-out can be set from 1  ms to 268 s or disabled at all by SW. Default is enabled, 

time-out ~ 4 s. WDT time-out varies with temperature, supply voltage and other 
conditions from part to part. See PIC datasheet [8].

Oscillator Internal RC, 8  MHz (500 ns instruction). Switching to lower clock is allowed but not 
recommended for keeping correct OS functionality especially during 
communication. IQMESH timing precision is not limited by precision of this oscillator 
when calibrated by the calibrateTimer() OS function.

Configuration words ("Fuses") CONFIG1 = 0x2014,  CONFIG2 = 0x38FF

These resources can be under OS supervision and the user should access them in accordance with this manual and 
possible requirements resulting from hardware construction of the module and OS implementation.
Configuration changes and direct access to some resources by the user can be limited or not allowed at all. Serviceability 
of some resources depends on using of some other ones at the same time (some hardware communication modules, pins 
and memory areas are shared for more functions, …).
Parts of memories are dedicated to PIC core, peripherals and operating system. Direct access (via the EEDATA register) to 
the EEPROM is not allowed at all, extra OS functions are intended for this. Flash memory is user accessible for uploading 
the program and OS plug-ins to the microcontroller using the IQRF development kits only. Indirect RAM access using the 
FSR register  is  not  allowed  due to security  reasons.  Instead of  this  IQRF OS provides complete  support  for indirect 
addressing using extra system functions.  Not dedicated user inputs/outputs, peripherals (e.g. I2C and UART) and RAM 
locations can be accessed directly according to user‘s needs.
Details see datasheets of the transceiver modules [7],  PIC datasheets [8] and Appendix 1 – RAM and EEPROM maps. In 
doubt, refer to IQRF support by the manufacturer [6].

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 7



IQRF OS
Memories

For memory purposes the IQRF OS uses internal memories of the microcontroller only. (TR-5xB also uses external serial 
EEPROM dedicated to OS, not user accessible.)
Individual parts of memories are:
• Dedicated to the microcontroller
• Dedicated to the OS
• Other areas are available for the user 
Memories can be under OS supervision and the user should access them in accordance with this manual and possible 
requirements resulting from hardware construction of the module and OS implementation. 
Illegal modification of dedicated memory locations can cause system crash.
There are several header files (with the .H extension) delivered with IQRF examples and tutorials. They are intended for C 
compiler to provide easy and seamless linking the OS with the user program. Of course, these text files could serve to 
user‘s survey concerning memories – but the user should nowise modify them. (The 16F886.h is based on standard file 
made by the C compiler manufacturer that is why they contain some IQRF irrelevant information to spare.) 
User’s own definitions should be placed to extra user header files. Names of user variables must not collide with names 
predefined in delivered header files.
Refer to Appendix 1 - RAM and EEPROM maps.

Program memory (Flash)
The user can use this as a program memory only. The program remains stored there even after power off. Overwriting is 
not unlimited, number of erase/write cycles is about 100 000 typically. 
User program can be uploaded into the TR module using appropriate IQRF development kits, e.g. CK-USB-04 and IQRF 
IDE servicing program [9]. Codes in standard .HEX format or encrypted codes in the .IQRF format can be uploaded.

• OS and plug-ins occupy the memory from 0x0000 to 0x1BFF
• Remaining area 0x1C00 – 0x1FFF (1024 machine instructions) is available for user program .

User program should begin from address 0x1C00. It is automatically arranged by the IQRF header files.

Data memory (RAM)
RAM data is fully under supervision of running program and is lost after power off.
Individual RAM parts:

• dedicated to the  microcontroller and its  peripherals  (PIC special function registers – SFRs). Direct using is mostly 
restricted, e.g. the application need not use registers INDF, EECON1, EECON2, EEADR, PIR2, PIE1 and PIE2. In doubt, 
refer to IQRF support by the manufacturer [6].

• dedicated to OS:
• IQRF communication (RF and SPI) is packet oriented therefore buffer servicing is supported. There are four basic 

buffers primarily dedicated to communication and block operation:
• bufferRF (0x110 – 0x14F),  64 B – for RF communication
• bufferCOM (0xA0 – 0xC8), 41 B – for serial communication (especially SPI). Use 35 B (0xA0 – 0xC2) only, the 

others are reserved for OS and future compatibility.
• bufferINFO (0x20 – 0x42), 35 B – for OS and user block operations
These communication buffers are especially intended for transferred data but can be used according user’s need in 
specific cases as well. There are specialized OS functions for comfortable buffer to buffer data copying.
• bufferAUX (0x1C0 – 0x1DF), 32 B – auxiliary buffer, to store bufferINFO temporarily to make it free for other 

operations.
• buffer networkInfo (22 B) is an area dedicated to network system information.
• system variables. Some of them (toutRF, userStatus etc.) can be directly accessed by the user.
• OS work variables (not documented, the user need not modify them).

• Area (0x190 –  0x1B7)  is  available for  the user (40 B).  It  is  located in the RAM bank 3.  Selection of  bank 3 is 
automatically arranged by the IQRF header files. Additionally, two userRegx registers (0x1F0 and 0x1F1) are available 
in area shared for all banks. If needed, refer to the PIC datasheets [8] for information about RAM banking.

See Appendix (RAM map).
For block access special OS functions are intended instead of access via FSR and INDF registers which is restricted due to 
security reasons. Indexes of arrays are not allowed to be variables. (A[1]=0 is allowed, A[i]=0 is restricted due to using FSR 
by the C compiler). See IQRF OS Reference Guide [1].

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 8



IQRF OS
Data memory (EEPROM)

EEPROM data remains stored even after power off. Overwriting is not unlimited, number of erase/write cycles is 100 000 
min., (typically 1 000 000). EEPROM is especially intended for configuration parameters and data.
Individual EEPROM parts:

• User data: 160 B from 0x00 to 0x9F (Nodes only). This area is not user available for Coordinators. 
• Application data: 32 B from  0xA0 to  0xBF (Nodes as well  as Coordinators). The user can use this area for his 

particular  needs (especially  intended for  configuration and similar  purposes).  It  is  accessible  for  reading via  the 
appINFO() function in a comfortable way. The factory settings string is: "Hello everybody. IQRF is here! "

• Dedicated to OS:  (Node as well as Coordinator)
Remaining EEPROM area (0xC0 – 0xFF) is dedicated to OS. It is not accessible by the user.

EEPROM access:

• Values can be specified in application (source) program to be written to EEPROM while the program is uploaded into 
the microcontroller.  EEPROM address  range is  0x2100-0x21FF instead of  0x00-0xFF when using  cdata and 
similar C statements (e.g. __EEAPPINFO = 0x21A0).

• The microcontroller can read/write data from/to EEPROM under user program control while the application is running 
using general OS functions for accessing EEPROM (eeWriteByte, ...).  Short addresses (0x00–0xFF) are used in this 
case. Access via EEADR and EEADTA registers is restricted due to security. See IQRF OS Reference Guide [1].

The user should avoid exceeding the number of erase/write cycles allowed. Note that also some other OS functions (bond, 
bondRequest, ...) write to EEPROM as well.

Identification
Module data

Every IQRF module contains information about itself. This is accessible via  the moduleInfo() function storing data to 
the bufferINFO in the following format:

address in bufferInfo 7 6 5 4 3 2 1 0

meaning OS build PIC type OS version
Coordinator / Node serial number

Module ID

Coordinator / Node: reserved for future OS versions (set to 1 in this OS version). Coordinator / Node is SW selectable in 
IQRF this OS version.

0: Node
1: Coordinator

OS version:
upper nibble (4  b): major version
lower nibble (4 b): minor version

PIC type:
3: PIC16F886

OS build: for the manufacturer only. Differences among various builds has no influence to functionality from the user's point 
of view.

Example (all in hexadecimal): 
                  [0] [1] [2] [3] [4] [5] [6] [7] 
bufferINFO[0–7] =  1C  10  00  01  30  03  39  11
Meaning: Coordinator, Module ID = 0100101C, IQRF OS version 3.00, PIC16F886, build # 0x1139.

Module ID is displayed by the IQRF IDE development environment.

Application data
It is a 32 B block in EEPROM (area  0xA0 –  0xBF) dedicated to the user application. It is possible to read data from it 
directly to the bufferINFO very effectively  by a single instruction (appINFO()) only. This area is intended for arbitrary 
information concerning user application but is especially useful for repeatedly employed (often permanent) data such an 
identification information to be compared after receiving (with the compareBufferINFO2RF() function).
Refer to memory maps in Appendix as well.

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 9



IQRF OS
Control

Operation modes
The TR modules can work in three modes:

• Programming: The user program or OS plug-in can be uploaded to the TR (including EEPROM content). This mode is 
available using the appropriate IQRF development kit and IQRF IDE development environment. See application note 
AN003 [11].

• Run: The TR module executes operation programmed by the user.
• Debug: Execution is stopped and data can be downloaded from the microcontroller and displayed by the IQRF IDE. This 

mode is fully under control of user program and interactive handling in IQRF IDE.

Real time
OS provides an efficient support for real time applications. It has a generator of time intervals running on background and 
appropriate functions. Basic interval (elementary OS time interval for timing on background – a “tick”) is 10  ms. Specified 
number of ticks serve for timing of  appropriate processes (delays, LED blinking, communication timeout checks, …) and 
also enables to create a user timebase. Tick is derived from internal RC oscillator. 
• Capture is another efficient timing tool. It is an independent resettable  timer (16-bit counter of ticks) freely running on 

background. It is suitable especially for working with long periods (up to 655  s).

• OS provides functions also for waiting on foreground.

• Short time intervals for timing on foreground can be derived also from instruction timing. The PIC16F886 is clocked with 
internal 8 MHz RC oscillator. Thus, instruction cycle is 500 ns (1 μs for some instructions) – see PIC datasheets [8].

Some OS functions  (especially  RFRXpacket and  several  delays)  share  the  same  internal  timers  that  is  why  these 
functions should not be used at the same time. Refer to the IQRF OS Reference guide [1], side effects. 
Note  that  time  precision  of  TR  modules  depends  on  precision  of  internal  RC  oscillator  –  see  PIC  datasheets  [8]. 
Microcontrollers are individually calibrated by the manufacturer but despite of this fact the precision and stability are less 
than for a crystal oscillators. The precision is sufficient for asynchronous communication (UART) with reasonable speed, for 
clock and calendar functions another suitable method should be used. To increase precision for operations based on ticks, 
tick duration is calibrated to crystal precision automatically after reset and should be also done by the user (from time to 
time,  in  case  of  temperature  or  supply  voltage  change  etc.)  This  is  useful  especially  for  IQMESH timing. See  the 
calibrateTimer() function in the IQRF OS Reference guide [1].

Watchdog
To increase the reliability, the OS uses hardware watchdog of the microcontroller. It is a continuously running independent 
timer  with  a  programmable  overflow  period.  It  should  be  used  that  never  overflow  during  correct  operation.  It  is 
accomplished via the clrwdt() instruction always executed in time, i.e. before the watchdog overflows. (This function is 
implemented not in OS but it is the PIC machine instruction supported with the  C  compiler). If an overflow occurs it is 
regarded  as  a  program  execution  failure  (especially  due  to  an  error  in  algorithm  in  application  program) and  the 
microcontroller responds with reset. If the failure is not a permanent one, it can lead to system recovering. The watchdog 
can run even in the Sleep mode (see below). Overflow in Sleep results in wake-up and continuing execution but not in the 
PIC reset.
The watchdog can be enabled/disabled in SW. Overflow period is user selectable (even while the program is running) from 
1 ms to 268 ms. Setup registers are WDTCON (WDTPSx and SWDTEN bits) and OPTION (PS0, PS1 and PS2 bits, 
remaining bits including PSA must be left unchanged by the user) – see PIC datasheets [8]. Default timeout period is about 
4 s. Watchdog can be disabled by SWDTEN=0 and reenabled by SWDTEN=1.

TR module Sleep
Complete TR module (including the RF circuitry, microcontroller and temperature sensor) can be set in the standby (Sleep) 
mode. In this case almost no operation is executed but the power consumption is minimized.
Transition to the Sleep mode:
The Sleep mode is initiated in software using the iqrfSleep() function in appropriate location in the source program. 
Then all TR hardware resources controlled by the OS are automatically suspended: activity of the TR module including the 
RF circuitry, temperature sensor, microcontroller as well as its peripherals (stopping of timers, disconnecting of internal 
pull-ups, ...).
Before switching to the Sleep mode:
• Power consumption should be minimized even for hardware resources of TR controlled by the user (PIC pins, possible 

PIC internal peripherals) and possible external peripherals connected. It must be done in user program. See the TR [7] 

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 10



IQRF OS
and PIC [8] datasheets.

• The microcontroller should be configured for subsequent  wake-up on pin change (if required):
• Wake-up on pin change is under user's control, default disabled.
• To enable, the sequence GIE = 0; RBIE = 1; iqrfSleep(); RBIF = 0; is required.

Returning to the operating mode (wake-up):
• after watchdog overflow (if enabled)
• after pin change on some pins (depending on the TR type, typically the C5 pin), when configured as inputs (if enabled)
• after power-off/on
Tip: wake-up types can be identified via the –TO and –PD status flags – see Reset below.

After the wake-up the microcontroller continues with execution the command following the Sleep function.
The user can use Sleep and wake-up without any restriction due to OS, all related microcontroller possibilities can be 
employed – see PIC datasheets [8].
Tip: sleep period can be setup via the watchdog timeout period. 
Typical sleep power consumption ~2 μA can be reached with all peripherals off – see the TR datasheets [7].

RF Sleep
RF  circuitry  can  be  set  in  power  saving  standby  mode  while  the  microcontroller  continues  running  using the 
setRFsleep()function. 0.6 mA typ. is saved. RF response is prolonged for 2 ms typ., 7 ms max. due to wake-up. Wake-
up can be caused by RFRXpacket(), RFTXpacket(), checkRF(x) or getSupplyVoltage().

RX chain
After RF transmission is finished RF chains are automatically disabled. In the Stay in RX mode the RX chain remains 
enabled for faster response to following checkRF, RFRXpacket or RFTXpacket.

Other PIC peripherals
There are PIC HW resources (I2C, UART, …) not supported with the OS but accessible directly via PIC special function 
registers. Refer to datasheet of the microcontroller [8].

Reset
The following reset types available:
• Power-on reset: Utilizes HW filter to eliminate improper power-up rising and spikes to some extent. A lot of applications 

need no external reset circuitry.
• Watchdog reset: After WDT time-out.
• Brown-out reset: If power supply falls below given level for given time the reset is invoked. This option is disabled but can be 

enabled by the manufacturer on request. Then it is possible to have it enabled during operation and disabled in Sleep. 
Reset can also be invoked by SW via the reset() function. It is the watchdog reset type.

To identify reset type four status flags are available in the userReg0 just after boot:

bit 7 6 5 4 3 2 1 0
Status flag -TO -PD -POR -BOR

  -TO Watchdog time-out flag
   -TO =  0   after reset execution, WDT overflow or reset() function.

  -TO =  1   after  power-up, clrwdt or iqrfSleep
  -PD Power-down flag

 -PD =  0   after iqrfSleep
    -PD =  1   after   power-up or clrwdt
  -POR Power-on reset flag

  -POR =  0   after power-on reset (must be set in software then)
  -POR =  1   no power-on reset occurred

  -BOR Brown-out reset flag
  -BOR =  0   after Brown-out reset (must be set in software then)
  -BOR =  1   no Brown-out reset occurred

Refer to the PIC datasheet [8], (STATUS and PCON registers) for details.

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 11



IQRF OS
Content of RAM registers after resets is strictly defined (set / cleared / not affected / unknown). It partly depends on reset type. Refer to 
datasheet of the microcontroller [8]. Additionally, OS clears the user memory area and keeps the  userStatus register 
unchanged after reset().

Tip: userStatus can be used to help to debug unexpected resets in user programs.

Temperature measurement
Temperature is measured by the on-board sensor using internal A/D converter of the microcontroller (TR-52B only). See 
E08-TEMPERATURE example [10] and IQRF OS Reference guide [1].

Battery check
See getsupplyVoltage() in IQRF OS Reference guide [1].

LED indication
Two on-board LEDs (red and green ) can be served by the set of specialized functions running on OS background.

Debug
The  IQRF  platform  provides  user  with  an  efficient  debugging  tool.  To  enjoy  its  powerful  capabilities,  the  following 
configuration should be used: The transceiver module plugged e.g. into the CK-USB-04 development kit connected to PC 
via USB with the IQRF IDE development environment [9].
Debug is directly supported by the OS with the  debug() function. This can be included in user program wherever you 
need to stop program executing and evaluate variables, EEPROM content or RAM registers. After uploading user program 
into the transceiver module the application is running until the debug() function is encountered. Then the program stops, 
the module is switched to the debug mode and data is downloaded and displayed on the screen.
The module stays in debug mode till the user wishes. Then the application program can continue execution until another 
debug() function is encountered and so on. To identify individual debug breakpoints the W register can be used. See 
IQRF IDE Help and E06–RAM example [10] for details.

SPI
Standard serial 4-wire bus running in OS background. See separate User's guide, Implementation in IQRF TR modules [5].

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 12



IQRF OS
RF

RF overview
OS functions allow powerful and user-friendly control of RF communication. From the user's point of view it means working 
primarily with memory and buffers (R/W operations with RF communication buffer). IQRF OS automatically provides all 
needed services including full protocol impementation:

• at transmission level: HW setup, coding for transmission, timeouts, ...
• at packet level: preamble, consistency checking, coding, ...
• at network level: routing, including information about the network and device, filtering, discovery, ...
Supported modes:

• Peer-to-peer: Two or more peer-to-peer devices, without a network Coordinator. Packets are available for all devices in 
range and completely managed by the user program. Number of devices is unlimited. Keep PIN=0 (see below) in this 
mode. This is the default mode.

• IQMESH: Topology with one Coordinator mastering the network and up to 65 000 end devices (Nodes) and up to 239 
devices in routing structure (backbone) with full network support. This mode is defined by setting the most significant bit 
(_NTWF) of the PIN register to 1. Nodes must be assigned (bonded) to the Coordinator's network. Peer-to-peer ("non-
networking") packets are also allowed in IQMESH.

Memory locations and registers related either to Peer-to-peer or IQMESH:
bufferRF[64] Buffer for RF routines (data to be sent by RFTXpacket or received by RFRXpacket), 64 B
PIN  Packet information. See below.
RX  Packet addresse (specify before transmitting)
TX  Original packet sender (set by OS during receiving)
DLEN Packet length (number of relevant bytes in bufferRF), 0-64 (specify before transmitting, set by

OS after receiving)
toutRF  Timeout for packet receiving (1-255) in number of 10 ms ticks or for LP and XLP modes in cycles

(RFIC On-Off periods). Default value is 50 (500 ms in STD mode).

IQMESH network and its individual devices can be configured very flexibly. IQMESH as well as peer-to-peer packets can 
be  sent  and  received  depending  on  setup  of  respective  devices.  Nodes can  be  assigned  to  groups.  Individual  and 
broadcast packets (for all network members) are supported and user addressing is allowed. IQMESH protocol has been 
defined as a light  and portable to  inexpensive microcontrollers  with limited resources.  One or two byte addressing is 
chosen.

Every  IQRF  device  can  simultaneously  work  in  two 
independent networks. This OS version supports two networks 
for every device, working as a Coordinator in one network and 
as a Node in second network. It allows chaining networks up to 
unlimited  number  of  devices  and  easy  data  sharing.  Non-
networking packets and packets coming from the other network 
can be filtered.  Background routing is fully suppported. Each 
Node  can  provide  background  routing  service  for  network 
packets  or  can  be  programed  as  a  dedicated  router.  Both 
Coordinator  and  Node  can  be  realized  by  a  more  complex 
device,  a Gateway,  providing an interface between IQMESH 
and other standards. 

Although IQMESH is very flexible and supports high variability and dynamic changes in configuration (including changes in 
topology), it is primarily intended for more or less static systems. Devices are included in  / excluded from the network by the 
bonding / unbonding procedure which should be considered to be an installation process by its nature. The Coordinator is 
not  intended  to  be  switched  dynamically  from  device  to  device  in  a  network.  The  Coordinator  should  manage  RF 
communication in the whole network.  Nodes are allowed to communicate anytime but it  can be recommended just in 
special cases. In typical applications the Coordinator always initiates any communication. All IQMESH communication is 
coded. The coding differs from network to network beeing readable in given network only. In addition to "user" packets, 
IQMESH uses also system packets with auxiliary information (e.g. for bonding, routing etc.). Such system packets are 
completely transparent from the user's point of view. 

Basic network information about current setup of given device (network identification, device number, current network, 
topology, ...) provides the getNetworkParams() function.

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 13



IQRF OS
RF networking

IQMESH packet transmission is supported by a lot of additional sophisticated features. The communication is possible 
even between nodes out of RF range each other – using “hops” via other nodes in range (routing). In addition to the normal 
operation,  every IQMESH device (TR module,  gateway,  ...)  can work  also as a  router  on background.  IQMESH can 
additionally contain specialized plug-and-play routers.
Packets for Peer-to-peer communication consists of three block -  PAH (packet header),  DATA and  CRC, while IQMESH 
packets  consists  of  four  blocks  -  PAH,  NTWINFO (networking  information),  DATA and  CRC.  Every  block  has  its  own 
consistency check mechanism (CRCs) to achieve high reliability.

PIN DLEN CRCH Networking info CRCN User data CRCD CRCS
PAH NTWINFO DATA CRC

PAH
Packet header, 3 bytes long block, carries basic information about a packet, such as data length and flags (whether  the 
packet is intended for peer-to-peer or IQMESH, indication of system communication, routing, direct peripheral addressing, 
encryption and acknowledgment request).

PIN
      bit      7           6                    5    4               3             2         1                 0

_NTWF _ACKF _ROUTEF _CRYPTF _MPRWF _SYSPF _TIMEF _AUXF

_NTWF:
NTWF = 0 Peer-to-peer mode
NTWF = 1 IQMESH mode

_ACKF: Acknowledge request (specify request to the packet before TX, accomplish request after RX). 
Handling with this flag and all acknowledge processing is fully up to the user (OS just transfers this flag 
without any consequences).

_ROUTEF (for IQMESH mode only):
ROUTEF = 0 Routing not required for outgoing packets.
ROUTEF = 1 Routing required for outgoing packets, routing registers RTDT0-3 must be defined.

_CRYPTF: Crypting requested. Reserved for future use.

_MPRWF (intended only for special applications supporting direct access to peripherals and services):
MPRWF = 0 Module peripheral read/write not active
MPRWF = 1 Module peripheral read/write active. MPRW0-2  is added to NTWINFO by OS.

_SYSPF: Dedicated to OS, not intended for users. 

_TIMEF: Dedicated to OS, not intended for users.

_AUXF: Reserved for future use. 

NTW INFO (applies for IQMESH mode only)
Networking information block with variable length based on PIN flags. Just five bytes (RX to PID) are mandatory (present in 
every  IQMESH  packet),  the  others  depend  on  actual  situation.  For  example,  Star  topology  does  not  need  routing 
information. Setting ROUTEF = 0 will make a packet without routing, while after setting ROUTEF = 1 six bytes describing 
the routing are expected to be added to the NTWINFO. This mechanism provides a way to fit various application needs. 
NTWINFO registers are set by the sender and are passed to all recipients via the packet. Thus, the recipient know which 
hop is actually in question and how long it is to wait before possible forwarding.

RX TX ... PID RT0TX RTDEF RTDT0-3 MPRW0-2

RX Address of the device the packet is intended to in current network:
• 0 Coordinator
• 1 - 239 Nodes
• 240 - 253 Reserved
• 254 Universal address – see bondNewNode()
• 255 Broadcast
This must be specified by the user before sending an IQMESH packet.

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 14



IQRF OS
TX Address of transmitting sender. It is automatically set by OS by RFTXpacket().
PID Packet identification (can be set by the user, e.g. not to respond twice to the same packet). See example E11–

IQMESH-N [10].
RTOTX For OS only.
RTDEF Routing algorithm.
RTDT0-3 Routing data. See below.
MPRW0-2  Reserved for Direct peripheral access.

User data
Data from/to the bufferRF. The length can vary between 0 and 64 B.

RF transmitting
It is possible to combine sending peer-to-peer and IQMESH packets (depending on the NTWF flag).
• Peer-to-peer: Prepare data to the  bufferRF,  specify data length (DLEN = ...) and simply send the packet via the 
RFTXpacket(). All receivers obtain the data and DLEN only.

• IQMESH: To send IQMESH packets, an appropriate setup (Coordinator/Node selection etc.) should be done and the 
Node should be bonded to a network. Sending itself is similar to Peer-to-peer but the receiver address  (and possible 
routing information) must be specified. Other networking information is added to the packet by OS automatically. 

If bidirectional communication, PIN and DLEN should be updated before every transmitting followed after any reception.

Packets can be sent in several modes in dependency on receiver mode.
See the IQRF OS Reference guide [1] (RFTXpacket()) and examples E01–TX, E03–TR and E09–LINK [10].

RF receiving
The RFRXpacket() function attempts to receive a packet and returns control to application after successful reception or 
after  the  timeout.  Timeout  during packet  receiving  terminates  the reception  except  of  the  Wait  packet  end option  is 
enabled.. The user has full control on timing as the timeout can be set in ticks (~10ms in STD RX mode or in cycles ~40 ms 
in LP RX or ~600 ms in XLP RX) prior to the RFRXpacket() function call (toutRF = ...).  

Result (the  RFRXpacket() return value) depends on the conditions (filtering, current network, RX mode, packet type, 
addresse etc.).
To achieve desired noise immunity, programmable signal strength filtering is applied in LP, XLP and SSF RX modes (see 
below). Incoming signal with lower level than one of four predefined values is ignored. Relative RF range is shortened due 
to this filtration.
After successful reception respective values are valid: received data in bufferRF, data length (DLEN) and possibly all other 
networking information.
To achive ultra low power consumption, the following RX modes are available:
• STD: standard
• LP (low power):  receiving combined with standby mode. Incomming packets should be detected by  RFRXpacket() 

(utilizing signal strenght filtering) but not by checkRF(x).
• XLP (extra  low  power):  receiving  combined  with  deep  standby  mode.  Incomming  packets  should  be  detected  by 
RFRXpacket() (utilizing signal strenght filtering) but not by checkRF(x). 

• RFIM (RF Immunity Mode): RFRXpacket() is prematurely terminated if RF signal falls below predefined level specified 
in the sefRFmode(x) function, bits FF. This should be used with checkRF() only: if checkRF() …

See the IQRF OS Reference guide [1] , RFRXpacket() and examples E02–RX, E03–TR and E09–LINK [10].

Filtering

In case of chaining networks it can be selected whether packets should be received from both networks (including peer-to-
peer packets) or from the current network only. If filtering is off current network is automatically switched to the network the 
packet was received from.

Addressing
There are 3 types of addresses – see below (Routing, Addressing overview):
• Logical address: created by bonding.
• User address: created by setUserAddress(x).
• Virtual routing number, VRN: created by Discovery. For OS only. The user need not take care about VRNs at all.

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 15



IQRF OS
Routing

Routing allows sending packets to addressees out of the sender's range using "hops" via devices which are in range each 
other.  This  IQRF OS  supports  up to  239 routing devices  for a  packet.  Routing is  separated from addressing and is 
transparent from th user's point of view. There are several routing algorithms specified in the RTDEF register according to 
network topology. Packet is routed via devices in specified order (routing vector) in defined time slots with specified period 
each. Retransmitting passes in reverse order. OS ensures that the packet is ignored by all devices except of the addresse 
and the devices specified in the routing vector. 
For effective IQMESH the topology (placement of devices with respect to the range) should be designed in a redundant 
way - every device should have sufficient number of devices in range. Routing algorithm should be specified with respect to 
reliability and speed requirements. Due to time slots the efficiency should considerably depend on the order in the routing 
vector as well. The Addressee does not route the packet except of a broadcast one.
Thus, routing allows higher range, lower RF output power, more ways to deliver packets, higher noise immunity, resistance 
against  failures and dropouts (self-healing)  and flexibility  with  respect  to dynamic changes in  range among individual 
devices (moving of persons, obstacles or devices themselves) which results in better throughput and reliability.
Routing can be enabled or disabled for individual nodes. Routed packets can be received whenever the RFRXpacket() is 
active in routing device but they can be retransmitted in respective time slots only.
Discovery
Nodes can be placed according to their addresses (with respect to fixed routing vector 1, 2, 3, …) or in a random order. But 
the random order requires Discovery when internal routing backbone is created and routing paths are found automatically. 

Discovery  assorts  Nodes to  zones  (groups  of  Nodes which  can  be reached  by  the same number  of  hops  from the 
Coordinator). Number of zones can be limited by the user.

During Discovery the answeSystemPacket() function must run in a loop in every Node to be discovered. It is recommended 
to run Discovery with stronger filter then it is planned for common communication (lower RF power on the Coordinator side 
or stronger RSSI filter on the Node side – see example E11-IQMESH-N [10]). Nodes answer with the same output power 
(possible restoration is up to the user). Number of discovered nodes can be less than number of bonded nodes. Discovery 
results also depends on the setRoutingOff() function in Nodes.

After changes influencing the range (changes in topology, addressing, device placement, obstacles, permanent failure of a 
router etc.) the Discovery should be reinvoked.
Routing is possible under all following conditions:
• The routing device is bonded to respective network
• The packet was sent by the original sender with routing requirement (ROUTEF = 1)
• The RFRXpacket() function is active in the routing device when the packet to be routed is sent.
• The ROUTEF flag relates to outgoing packets and has no influence to routing incoming packets at all.

Dedicated router for STD packets doing nothing but background routing can be realized very simply by a neverending loop:
setNodeMode();
while (1)
{
  RFRXpacket();
  clrwdt();
}

It assumed this device has already been bonded. Due to power consumption it is recommended to supply such a router 
from mains adapter. Battery operated routers should use the LP or XLP receive modes.

Every application has usually very different requirements. For example, a typical Smart House application can be realized 
with  4 hops and there is a need for fast response,  while  collecting data from power meters usually needs a network 
supporting much more hops but the latency is allowed. Thus, IQMESH specification supports various routing algorithms. 
IQMESH allows up to 65 000 devices in single network but only 239 of them are allowed to route.
All algorithms works with the following parameters:
• RTDT0: number of hops per packet (0 – 239). 0 means direct delivery (without routing), e.g. 2 means 3 packets sent. It 

should be set according to topology (e.g. number of bonded Nodes in case of chain MESH). RTDT0 is decremented in 
each hop.

• RTDT1: time slot duration (in ticks). It should be longer than the transmit time for given packet. It depends on number of 
user data to be sent, PIN, DLEN, RF mode and RF speed. It can be approximately evaluated (in ticks) for 19.2 kb/s:
• STD: (1 or 2) + 1 for every 24 B of user data

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 16



IQRF OS
• LP:  (5 or 6) + 1 for every 24 B of user data
• XLP: 120

• RTDT2: DID (Discovered ID) – identification of Discovery. Not set by the user.
• RTDT3: Upper byte of user address if user addressing is used.

If number of hops = number of bonded nodes the routing is very robust (flooding). But even flooding is no assurance that 
the packet is successfully routed (overdue if unsuitable order of Nodes).

Routed packet is delivered in frame = time slot length x number of hops and should be answered not before 
the frame is elapsed. Time starts from the packet sent by the Coordinator (the first slot is dedicated to the Coordinator).

Routing algorithms
• SFM (Static Full MESH)

Up to 240 devices in a network is allowed. Routing vector is fixed (1, 2, 
…, 239),  logical addresses are used for addressing (RX = logical 
address). Broadcast address is 0xFF.  Bonding can be done before 
placement, addresses must be known and devices must be placed with 
respect to topology (adresses should increase with the distance from 
the Coordinator). Discovery is no use.
Example: Selecting RTDT0=4 (4+1 hops) and RTDT1=5 (50 ms time slot) is analogic to the only routing algorithm in OS 
v2.xx.

• DFM (Discovered Full MESH)
Up  to  240  devices  in  a  network  is  allowed. Random  placement  is 
allowed  and  addresses  need  not  be  known  for  routing  purpose  but 
Discovery has to be performed after placement and bonding. Routing 
uses renumbered addresses (VRN, Virtual Routing Numbers) as a result 
of the Discovery process which creates a routing backbone with up to 
240 devices devided to zones  (based on minimal number of  hops to 
individual Nodes). VRNs increase with the distance from the Coordinator 
(virtual routing backbone), are intended for OS only, the user need not 
take  care  about  it. After  a  change  in  topology  Discovery  should  be 
repeated.  DFM  is  analogic  to  SFM  but  VRNs  are  used  for  routing 
instead of logical addresses. User addressing is completely the same 
(RX = logical address). Broadcast address is 0xFF. 
1 – 9: logical addresses, 1 – 9: VRNs, Z1 – Z4: zones.

• DOM (Discovered Optimized MESH):  DOM is a special case of DFM. It is quite the same but number of hops is 
optimized (reduced) by the optimizeHops() function. It sets the RTDT0 (number of hops)  according to Discovery 
results to VRN of addressed Node to speed up the transmission at the cost of reduced redundancy. 

• DFM2B (Discovered Full MESH, 2 B)
The same as DFM but up to 65 000 devices and virtual routing backbone with up to 239 Nodes in a network is allowed. 2 
B user addressing must be used based on setUserAddress(x). Adressing: RTDT3 = high byte, RX = low byte. Broadcast 
address is 0xFFFF. Groups can be created by assigning the same addresses to more Nodes. optimizeHops() is not 
intended for DFM2B. See IQRF OS Reference guide [1], bondNewNode() and setUserAddress() for details.

• Tree: Just one router in every zone is used. It is the fastest way to return packets back to the Coordinator but without a 
redundancy at all. It works for packets from Nodes to the Coordinator only. Not fully implemented and tested yet.

Tip: Routing algorithms can be mixed each other. Thus, the user can use faster algorithm first and then more redundant 
one(s) for not responding Nodes only.

Addressing overview

Routing algorithm RTDEF Address range Addressing by Addressing Broadcast address

Not implemented 0x00 – – – –

SFM 0x01 1 to 239 logical address RX = … 0xFF

DFM 0x02 1 to 239 logical address RX = … 0xFF

DFM2B 0x42 1 to 65 000 user address
RTDT3 = high byte
RX = low byte 0xFFFF

Tree 0x08 1 to 239 logical address RX = … 0xFF

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 17



IQRF OS
Bonding

Devices are bonded to an IQMESH network when they are assigned to given Coordinator. Bonding is a mutual relationship 
between Coordinator and Node. Coordinator assigns a number (1 to 239) to the Node which can serve as device address. 
This short (1 B) address is used within the network. Individual network is identified via the unique four byte Module ID of the 
Coordinator - see Identification. This long ID is used outside the network.
Bonding is based on Node request (bondRequest()) confirmed by the Coordinator (bondNewNode()) via exchanging 
RF system packets. RF power is not limited by OS during bonding. To avoid possible influence on other modules, bonding 
can be performed on minimal distance with RF power lowered by the user.
The following bonding information is written in system EEPROMs (but they are not intended for direct user access):
• Coordinator:

• Bit array. Individual flags = 1 if respective Node is bonded on Coordinator side
• Node:

• Node number: short (1 B) device address
• Network identification (4 B)
• Flag if the Node is bonded on Node side

Address assigned by bonding can be specified by the user. If omitted, default is number of bonded nodes + 1. Thus, 
bondNewNode(0) is suitable for the initial bonding without discontinuities due to possible previous unbondings only.

The user can check results and make arbitrary changes in bonding at any time. There is a set of OS functions dedicated to 
bonding and related operations (access results, unbonding, rebonding etc). But once the Node is bonded and respective 
records are written to EEPROMs on both sides, Coordinator as well as Node starts keeping its own bonding information 
independently and no subsequent changes in bonding are carried over to opposite side via RF automatically arranged by 
OS. 
In  short,  only  bondRequest and  bondNewNode exchange  RF  system packets  between  Coordinator  and  Node.  All 
subsequent changes in bonding by either Coordinator or Node are written to EEPROM just on one side. For example, 
removeBondedNode(),  rebondNode() and  clearAllBonds() operate  with  the  Coordinator  bit  array  only  and 
removeBond operates with the Node flag only. If synchronization between Coordinator and Node after changes is needed 
it must be done by the application program. Static systems that suit IQRF best have moderate requirements for changes in 
bonding.

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 18



IQRF OS
Appendix 1
EEPROM map

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 19

00
Av

ai
la

bl
e 

fo
r 

No
de

 o
nl

y.
 D

o 
no

t 
us

e 
fo

r 
Co

or
di

na
to

r.
40

Av
ai

la
bl

e 
fo

r 
No

de
 o

nl
y.

 D
o 

no
t 

us
e 

fo
r 

Co
or

di
na

to
r.

80

Av
ai

la
bl

e 
fo

r 
No

de
 o

nl
y.

 D
o 

no
t 

us
e 

fo
r 

Co
or

di
na

to
r.

C0

Re
se

rv
ed

 b
y 

op
er

at
in

g 
sy

st
em

. 
Do

 n
ot

 u
se

 a
t 

al
l.

01 41 81 C1
02 42 82 C2
03 43 83 C3
04 44 84 C4
05 45 85 C5
06 46 86 C6
07 47 87 C7
08 48 88 C8
09 49 89 C9
0A 4A 8A CA
0B 4B 8B CB
0C 4C 8C CC
0D 4D 8D CD
0E 4E 8E CE
0F 4F 8F CF
10 50 90 D0
11 51 91 D1
12 52 92 D2
13 53 93 D3
14 54 94 D4
15 55 95 D5
16 56 96 D6
17 57 97 D7
18 58 98 D8
19 59 99 D9
1A 5A 9A DA
1B 5B 9B DB
1C 5C 9C DC
1D 5D 9D DD
1E 5E 9E DE
1F 5F 9F DF
20 60 A0

Ap
pl

ic
at

io
n,

 3
2B

E0
21 61 A1 E1
22 62 A2 E2
23 63 A3 E3
24 64 A4 E4
25 65 A5 E5
26 66 A6 E6
27 67 A7 E7
28 68 A8 E8
29 69 A9 E9
2A 6A AA EA
2B 6B AB EB
2C 6C AC EC
2D 6D AD ED
2E 6E AE EE
2F 6F AF EF
30 70 B0 F0
31 71 B1 F1
32 72 B2 F2
33 73 B3 F3
34 74 B4 F4
35 75 B5 F5
36 76 B6 F6
37 77 B7 F7
38 78 B8 F8
39 79 B9 F9
3A 7A BA FA
3B 7B BB FB
3C 7C BC FC
3D 7D BD FD
3E 7E BE FE
3F 7F BF FF



IQRF OS
RAM map (PIC16F886)

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 20

IRP = 0 IRP = 1 IRP = 0 IRP =1
Bank 0 Bank 1 Bank 2 Bank 3 Bank 0 Bank 1 Bank2 Bank3

00 Ind. addr. 80 Ind. addr. 100 Ind. addr. 180 Ind. addr. 40

bu
.. 32 C0

bu
ff
er
CO
M

32 140

bu
ff

er
RF

48 1C0

bu
ff

er
AU

X

00
01 TMR0 81 OPTION_REG 101 TMR0 181 OPTION_REG 41 33 C1 33 141 49 1C1 01
02 PCL 82 PCL 102 PCL 182 PCL 42 34 C2 34 142 50 1C2 02
03 STATUS 83 STATUS 103 STATUS 183 STATUS 43 C3 35 143 51 1C3 03
04 FSR  84 FSR 104 FSR 184 FSR 44 C4 36 144 52 1C4 04
05 PORTA 85 TRISA 105 WDTCON 185 SRCON 45 C5 37 145 53 1C5 05
06 PORTB 86 TRISB 106 PORTB 186 TRISB 46 C6 38 146 54 1C6 06
07 PORTC 87 TRISC 107 CM1CON0 187 BAUDCTL 47 C7 39 147 55 1C7 07
08 – 88 – 108 CM2CON0 188 ANSEL 48 C8 40 148 56 1C8 08
09 PORTE 89 TRISE 109 CM2CON1 189 ANSELH 49 C9 149 57 1C9 09
0A PCLATH 8A PCLATH 10A PCLATH 18A PCLATH 4A CA 14A 58 1CA 10
0B INTCON 8B INTCON 10B INTCON 18B INTCON 4B CB 14B 59 1CB 11
0C PIR1 8C PIE1 10C EEDAT 18C EECON1 4C toutRF CC 14C 60 1CC 12
0D PIR2 8D PIE2 10D EEADR 18D EECON2 4D CD 14D 61 1CD 13
0E TMR1L 8E PCON 10E EEDATH 18E – 4E CE 14E 62 1CE 14
0F TMR1H 8F OSCCON 10F EEADRH 18F – 4F CF 14F 63 1CF 15
10 T1CON 90 OSCTUNE 110

bu
ff

er
RF

00 190 50 D0 150 1D0 16
11 TMR2 91 SSPCON2 111 01 191 51 D1 151 1D1 17
12 T2CON 92 PR2 112 02 192 52 D2 152 1D2 18
13 SSPBUF 93 SSPADD 113 03 193 53 D3 153

ne
tw

or
kI

nf
o

PIN   00 1D3 19
14 SSPCON 94 SSPSTAT 114 04 194 54 D4 154 DLEN  01 1D4 20
15 CCPR1L 95 WPUB 115 05 195 55 D5 155       02 1D5 21
16 CCPR1H 96 IOCB 116 06 196 56 D6 156 RX    03 1D6 22
17 CCP1CON 97 VRCON 117 07 197 57 D7 157 TX    04 1D7 23
18 RCSTA 98 TXSTA 118 08 198 58 D8 158       05 1D8 24
19 TXREG 99 SPBRG 119 09 199 59 D9 159       06 1D9 25
1A RCREG 9A SPBRGH 11A 10 19A 5A DA 15A PID   07 1DA 26
1B CCPR2L 9B PWM1CON 11B 11 19B 5B DB 15B RTOTX 08 1DB 27
1C CCPR2H 9C ECCPAS 11C 12 19C 5C DC 15C RTDEF 09 1DC 28
1D CCP2CON 9D PSTRCON 11D 13 19D 5D DD SPIpacketLength 15D RTDT0 10 1DD 29
1E ADRESH 9E ADRESL 11E 14 19E 5E DE 15E RTDT1 11 1DE 30
1F ADCON0 9F ADCON1 11F 15 19F 5F DF 15F RTDT2 12 1DF 31
20

bu
ff

er
IN

FO

00 A0

bu
ff

er
CO

M

00 120 16 1A0 60 E0 160 RTDT3 13 1E0
21 01 A1 01 121 17 1A1 61 E1 161 MPRW0 14 1E1
22 02 A2 02 122 18 1A2 62 E2 162 MPRW1 15 1E2
23 03 A3 03 123 19 1A3 63 E3 163 MPRW2 16 1E3
24 04 A4 04 124 20 1A4 64 E4 164       17 1E4
25 05 A5 05 125 21 1A5 65 E5 165       18 1E5
26 06 A6 06 126 22 1A6 66 E6 166       19 1E6
27 07 A7 07 127 23 1A7 67 E7 167       20 1E7
28 08 A8 08 128 24 1A8 68 E8 168       21 1E8
29 09 A9 09 129 25 1A9 69 E9 169 1E9
2A 10 AA 10 12A 26 1AA 6A EA 16A 1EA
2B 11 AB 11 12B 27 1AB 6B EB 16B 1EB
2C 12 AC 12 12C 28 1AC 6C EC 16C 1EC
2D 13 AD 13 12D 29 1AD 6D ED 16D 1ED userStatus
2E 14 AE 14 12E 30 1AE 6E EE 16E 1EE memoryOffsettTo
2F 15 AF 15 12F 31 1AF 6F lastRSSI EF 16F 1EF memoryOffsetFrom
30 16 B0 16 130 32 1B0 70 userReg0 F0 userReg0 170 userReg0 1F0 userReg0
31 17 B1 17 131 33 1B1 71 userReg1 F1 userReg1 171 userReg1 1F1 userReg1
32 18 B2 18 132 34 1B2 72 param1 F2 param1 172 param1 1F2 param1
33 19 B3 19 133 35 1B3 73 param2 F3 param2 173 param2 1F3 param2
34 20 B4 20 134 36 1B4 74 param3 F4 param3 174 param3 1F4 param335 21 B5 21 135 37 1B5 75 F5 175 1F5
36 22 B6 22 136 38 1B6 76 param4 F6 param4 176 param4 1F6 param437 23 B7 23 137 39 1B7 77 F7 177 1F7
38 24 B8 24 138 40 1B8 78 F8 178 1F8
39 25 B9 25 139 41 1B9 79 F9 179 1F9
3A 26 BA 26 13A 42 1BA 7A FA 17A 1FA
3B 27 BB 27 13B 43 1BB 7B FB 17B 1FB
3C 28 BC 28 13C 44 1BC 7C FC 17C 1FC
3D 29 BD 29 13D 45 1BD 7D FD 17D 1FD
3E 30 BE 30 13E 46 1BE 7E FE 17E 1FE
3F 31 BF 31 13F 47 1BF 7F FF 17F 1FF

 – reserved for PIC HW  – OS buffers  – reserved for OS  – user available



IQRF OS
Appendix 2

868 MHz band channel map

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 21

Channel Bit rate g band 863.000 - 868.000 MHz duty 0.1%
BR1 BR2 BR3 g1 band 868.000 - 868.600 MHz duty 1%

1.2 - 19.2 57,6 86,2 g2 band 868.700 - 869.200 MHz duty 0.1%
Frequency [MHz]

0 863.15 863.15 863.15
1 863.25 863.35 863.55
2 863.35 863.55 863.95
3 863.45 863.75 864.35
4 863.55 863.95 864.75
5 863.65 864.15 865.15
6 863.75 864.35 865.55
7 863.85 864.55 865.95
8 863.95 864.75 866.35
9 864.05 864.95 866.75

10 864.15 865.15 867.15
11 864.25 865.35 867.55
12 864.35 865.55 867.95
13 864.45 865.75 868.35
14 864.55 865.95 868.75
15 864.65 866.15
16 864.75 866.35
17 864.85 866.55
18 864.95 866.75
19 865.05 866.95
20 865.15 867.15
21 865.25 867.35
22 865.35 867.55
23 865.45 867.75
24 865.55 867.95
25 865.65 868.15
26 865.75 868.35
27 865.85 868.55
28 865.95 868.75
29 866.05 868.95
30 866.15
31 866.25
32 866.35
33 866.45
34 866.55
35 866.65
36 866.75
37 866.85
38 866.95
39 867.05
40 867.15
41 867.25
42 867.35
43 867.45
44 867.55
45 867.65
46 867.75
47 867.85
48 867.95
49 868.05
50 868.15
51 868.25
52 868.35
53 868.45
54 868.55
55 868.65
56 868.75
57 868.85
58 868.95
59 869.05
60 869.15
61 869.25



IQRF OS
916 MHz band channel map

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 22

Channel Bit rate Channel Bit rate Channel Bit rate
BR1 BR2 BR3 BR1 BR2 BR1

1.2 - 19.2 57.6 86.2 1.2 - 19.2 57.6 1.2 - 19.2
Frequency [MHz] Frequency [MHz] Frequency [MHz]

0 900.90 900.90 900.90 63 910.35 919.80 126 919.80
1 901.05 901.20 901.50 64 910.50 920.10 127 919.95
2 901.20 901.50 902.10 65 910.65 920.40 128 920.10
3 901.35 901.80 902.70 66 910.80 920.70 129 920.25
4 901.50 902.10 903.30 67 910.95 921.00 130 920.40
5 901.65 902.40 903.90 68 911.10 921.30 131 920.55
6 901.80 902.70 904.50 69 911.25 921.60 132 920.70
7 901.95 903.00 905.10 70 911.40 921.90 133 920.85
8 902.10 903.30 905.70 71 911.55 922.20 134 921.00
9 902.25 903.60 906.30 72 911.70 922.50 135 921.15

10 902.40 903.90 906.90 73 911.85 922.80 136 921.30
11 902.55 904.20 907.50 74 912.00 923.10 137 921.45
12 902.70 904.50 908.10 75 912.15 923.40 138 921.60
13 902.85 904.80 908.70 76 912.30 923.70 139 921.75
14 903.00 905.10 909.30 77 912.45 924.00 140 921.90
15 903.15 905.40 909.90 78 912.60 924.30 141 922.05
16 903.30 905.70 910.50 79 912.75 924.60 142 922.20
17 903.45 906.00 911.10 80 912.90 924.90 143 922.35
18 903.60 906.30 911.70 81 913.05 925.20 144 922.50
19 903.75 906.60 912.30 82 913.20 925.50 145 922.65
20 903.90 906.90 912.90 83 913.35 925.80 146 922.80
21 904.05 907.20 913.50 84 913.50 926.10 147 922.95
22 904.20 907.50 914.10 85 913.65 926.40 148 923.10
23 904.35 907.80 914.70 86 913.80 926.70 149 923.25
24 904.50 908.10 915.30 87 913.95 927.00 150 923.40
25 904.65 908.40 915.90 88 914.10 927.30 151 923.55
26 904.80 908.70 916.50 89 914.25 927.60 152 923.70
27 904.95 909.00 917.10 90 914.40 927.90 153 923.85
28 905.10 909.30 917.70 91 914.55 928.20 154 924.00
29 905.25 909.60 918.30 92 914.70 928.50 155 924.15
30 905.40 909.90 918.90 93 914.85 928.80 156 924.30
31 905.55 910.20 919.50 94 915.00 929.10 157 924.45
32 905.70 910.50 920.10 95 915.15 158 924.60
33 905.85 910.80 920.70 96 915.30 159 924.75
34 906.00 911.10 921.30 97 915.45 160 924.90
35 906.15 911.40 921.90 98 915.60 161 925.05
36 906.30 911.70 922.50 99 915.75 162 925.20
37 906.45 912.00 923.10 100 915.90 163 925.35
38 906.60 912.30 923.70 101 916.05 164 925.50
39 906.75 912.60 924.30 102 916.20 165 925.65
40 906.90 912.90 924.90 103 916.35 166 925.80
41 907.05 913.20 925.50 104 916.50 167 925.95
42 907.20 913.50 926.10 105 916.65 168 926.10
43 907.35 913.80 926.70 106 916.80 169 926.25
44 907.50 914.10 927.30 107 916.95 170 926.40
45 907.65 914.40 927.90 108 917.10 171 926.55
46 907.80 914.70 928.50 109 917.25 172 926.70
47 907.95 915.00 929.10 110 917.40 173 926.85
48 908.10 915.30 111 917.55 174 927.00
49 908.25 915.60 112 917.70 175 927.15
50 908.40 915.90 113 917.85 176 927.30
51 908.55 916.20 114 918.00 177 927.45
52 908.70 916.50 115 918.15 178 927.60
53 908.85 916.80 116 918.30 179 927.75
54 909.00 917.10 117 918.45 180 927.90
55 909.15 917.40 118 918.60 181 928.05
56 909.30 917.70 119 918.75 182 928.20
57 909.45 918.00 120 918.90 183 928.35
58 909.60 918.30 121 919.05 184 928.50
59 909.75 918.60 122 919.20 185 928.65
60 909.90 918.90 123 919.35 186 928.80
61 910.05 919.20 124 919.50 187 928.95
62 910.20 919.50 125 919.65 188 929.10



IQRF OS
Documentation and Information

1 IQRF OS Reference guide www.iqrf.org/weben/downloads.php?id=156
2 RAM map and EEPROM map,  IQRF OS User's guide, Appendix [1]
3 IQRF home page www.iqrf.org
4 IQMESH specification www.iqmesh.org/iqmesh
5 SPI specification www.iqrf.org/weben/downloads.php?id=85
6 IQRF support site www.iq-esupport.com
7 TR-52B datasheet: www.iqrf.org/weben/downloads.php?id=91

TR-53B datasheet: http://www.iqrf.org/weben/downloads.phpd?id=163
8 PIC16F886 datasheet: www.iqrf.org/weben/downloads.php?id=126
9 IQRF IDE: www.iqrf.org/weben/downloads.php?id=86
10 Basic examples (included in the StartUp Package): www.iqrf.org/weben/downloads.php?id=112
11 AN003 – IQRF development tools Installation guide: http://www.iqrf.org/weben/downloads.php?id=109

If you need a help or more information please visit IQRF support pages [6] and Submit a Ticket with your request. A lot of 
information is also available in the IQRF OS User's guide [1] and on the IQRF home page [3].

Document revision
• 110112 Information aded and precised
• 101223 Preliminary release, OS v3.00

If you need a help or more information please visit IQRF support pages  [6] and Submit a Ticket with your request. A lot of 
information is also available on the IQRF web site [3].

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 23

http://www.iqrf.org/weben/downloads.php?id=156
http://www.iqrf.org/weben/downloads.php?id=109
http://www.iqrf.org/weben/downloads.php?id=112
http://www.iqrf.org/weben/downloads.php?id=86
http://www.iqrf.org/weben/downloads.php?id=126
http://www.iqrf.org/weben/downloads.php?id=163
http://www.iqrf.org/weben/downloads.php?id=92
http://www.iq-esupport.com/
http://www.iqrf.org/weben/downloads.php?id=85
http://www.iqmesh.org/iqmesh
http://www.iqrf.org/


IQRF OS
Sales and Service

Corporate office:
 

MICRORISC s.r.o., Delnicka 222, 506 01 Jicin, Czech Republic, EU
Tel:  +420 493 538 125, Fax: +420 493 538 126, www.microrisc.com

Partners and distribution:
 

please visit www.iqrf.org/partners

Quality management:
ISO 9001 : 2000 certified 

Trademarks:
The IQRF name and logo are registered trademarks of MICRORISC s.r.o.
PIC, SPI, Microchip, RFM and all other trademarks mentioned herein are property of their respective owners.

Legal:
All  information contained in this publication is  intended through suggestion only  and may be superseded by updates 
without prior notice. No representation or warranty is given and no liability is assumed by MICRORISC s.r.o. with respect to 
the accuracy or use of such information.

Without written permission it is not allowed to copy or reproduce this information, even partially. 

No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

The IQRF products utilize several patents (CZ, EU, US)

Website  www.iqrf.org
E-mail
On-line support  http://iq-esupport.com

© 2010 MICRORISC s.r.o. www.iqrf.org MNIQRFOS300_ 110112 Page 24

http://iq-esupport.com/
http://www.microrisc.com/
http://www.microrisc.com/

	IQRF platform
	Compatibility
	IQRF OS versions and history
	OS Principles
	Concept of OS plug-ins
	IQRF OS Architecture 
	RF circuitry
	Microcontroller
	Memories
	Program memory (Flash)
	Data memory (RAM)
	Data memory (EEPROM)
	Identification
	Module data
	Application data


	Control
	Operation modes
	Real time
	Watchdog
	TR module Sleep
	RF Sleep
	RX chain
	Other PIC peripherals
	Reset
	Temperature measurement
	Battery check
	LED indication
	Debug

	SPI
	RF
	RF overview
	RF networking
	RF transmitting
	RF receiving
	Filtering
	Addressing
	Routing
	Bonding

	Appendix 1
	EEPROM map
	RAM map (PIC16F886)

	Appendix 2
	868 MHz band channel map
	916 MHz band channel map

	Documentation and Information
	Document revision
	Sales and Service

